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Abstract

An impulse response train is a signal that can be described as the response of a
linear time-invariant system to a sequence of equally spaced impulses of varying areas.
The impulse response assaciated with such a signal is called the kernel of the impulse
response train.

A variety of physical systems generate signals in a manner indicating that the sig-
nals can be modeled by impulse response trains. Examples of such signals are the
voiced sounds of speech, and the individual tones of wind instruments. Knowledge of
the kernel of such physically generated signals would be useful for two reasons. First,
the physical generating system can be simulated by a linear time-invariant system with
the kernel as impulse response. Second, the class of signals generated by the system
can be characterized by the kernel.

This report shows how to find the kernel of an impulse response train directly from
the signal itself. The method assumes that the spacing of the impulses is known, but
requires no knowledge of their areas, and also that the impulse response train is of
finite duration. Since the kernel of an impulse response train is rarely unique, the
method cannot always find the impulse response of the system that actually generated
the signal. Rather, the method finds the kernel of shortest duration. For impulse
response trains of finite duration there is only one such kernel, and all other kernels
are impulse response trains having it as their kernel. Therefore, for the purposes of
simulating the system and characterizing the signal, the kernel of minimum duration is
sufficient.

The method used to find the kernel involves only matrix multiplication and the
solving of simultaneous linear equations. Once the kernel is found, the impulse areas
can be determined, again, by the solution of simultaneous linear equations. All of these
operations can be routinely carried out by an electronic digital computer.
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1. IMPULSE RESPONSE TRAINS

An impulse response train (IRT) is a signal that can be described as the response

of a linear time-invariant system to a sequence of equally spaced impulses of varying
areas. An example of an IRT is shown in Fig. 1. The impulse response associated
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Fig. 1. The impulse response train s{t) is the response of the linear time-
invariant system with impulse response h(t) to the sequence of
equally spaced impulses of varying area a(t).

with a given IRT will be called the kernel of the IRT. Thus, in Fig. 1, h(t) is the kernel
of s(t).

It is our objective to show how the kernel of a given IRT can be determined directly
from the IRT itself, knowing only the spacing of the driving impulses, but nothing about
their areas.

1.1 IMPULSE RESPONSE TRAINS AND PHYSICAL SYSTEMS

As motivation for finding the kernel of an IRT, we note that a variety of physical sys-
tems generate signals in a manner indicating that the signals can be well modeled by
IRT. These physical systems generate signals by driving what essentially (over the
time interval of interest) is a linear time-invariant system by regularly recurring pulses
of variable amplitude, as shown in Fig. 2. Since these driving pulses can themselves
be thought of as the output of a linear system driven by regularly spaced impulses, the

generated signal can be modeled as the response of a composite linear time-invariant
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Source of variable amplitude Linear time-invariant system
pulses spaced T sec apart with impulse response shown

Output of the generating system

Fig. 2. A physical generating system that generates signals by driving a linear
time-invariant system with a sequence of equally spaced impulses of
varying amplitude.



system, as shown in Fig. 3. Examples of signals generated in this manner are the

voiced sounds of speech,1 and the individual tones of wind ins1:rumen1;s.2

T Eerow| I WSS

Composite linear system with impulse

response = convolution ( *) of the two Qutput of the generating system model
waveforms shown

Impulses of varying area
spaced T sec apart

Fig. 3. Model of the physical generating system of Fig. 2. The output of this
system is the same as that of Fig, 2. The impulse response of the
composite linear system is the kernel of the output signal.

A knowledge of the impulse response of this composite linear system, which is then
the kernel of the generated signal, is useful for two reasons. (i) It suggests a means of
simulation of the physical system. The system could be simulated by a linear time-
invariant system, with the kernel as impulse response, driven by impulses with the
appropriate spacing and areas., In practice, of course, the impulses are approximated
by short sharp pulses. Vowel sounds of speech have been successfully synthesized in
this manner.3’ 4 (ii) It is characteristic of the signals generated by the physical system.
Since the generated signal is a linear combination of delayed versions of the kernel, the
kernel is the fundamental "building block" of the signal. As an example of the utility of
such a characterization, a knowledge of the kernel has been'used to construct rejection
filters for these types of signals.5

Given that it is worth while to find the kernel, how do we go about it? If successive
impulse responses do not overlap, then there is no problem because the kernel is obvious
by inspection, so we shall assume that this is not the case. When they do overlap, it
might be possible to observe the waveform of the driving pulses within the actual
physical system, and to make measurements that determine the impulse response of the
linear system which they drive. Then the impulse response of the kernel can be deter-
mined by convolving these two. An alternative method would be to somehow find the
kernel directly from the generated signal itself. In this approach it is assumed that the
kernel somehow imposes a constraint on the generated signal, and that a knowledge of
this constraint can be used to extract the waveform of the kernel. Such a constraint will
be shown to exist and will be exploited to find the waveform of the kernel.

1.2 THE KERNEL OF MINIMUM DURATION

At this point it should be noted that the same IRT can have more than one kernel. For
example, a situation could be visualized in which a particular IRT s(t) had a kernel h{t)



which was in turn an IRT with the same spacing of impulses. Then it gan be seen that
the kernel of h(t) is also a kernel of s(t). As another example, the eniire IRT s{t) could
be its own kernel, and s(t) could be synthesized by a linear system with impulse response
s(t), driven by one unit impulse! In fact, this example makes it clear that an IRT with
just one kernel is of no interest, since that kernel would have to be the waveform itself.

Since it is possible for the same IRT to have several different kernels, then any
method attempting to find the kernel directly from the waveform cannot be guaranteed
to find the waveform of the composite impulse response that actually generated a given
physical signal. Moreover, when the beginning and ending of an IRT are known, that
is, when it is of finite duration, there is one kernel with particularly appealing prop-
erties. This is the kernel of shortest duration, or minimum kernel as we shall call it.
These properties are the following. (i) The minimum kernel is unique. (ii) The set of
impulses that go with the minimum kernel to synthesize the IRT are unique. (iii) Any
other kernel of the IRT is an IRT with the minimum kernel as its kernel.

For the previously avowed purposes of simulating the generating system and char-
acterizing the signal, the minimum kernel is clearly sufficient., Furthermore, since
physically generated signals of the type that we are interested in are usually of finite
duration, having to know the beginning and ending is not a serious restriction. Therefore,
we shall concentrate our efforts on finding the minimum kernel of a given IRT.

The method that will be used to find the minimum kernel has as its basis the fact
that sample pairs of an IRT taken one period apart are linearly dependent. This
dependence will be demonstrated in Section II, and subsequently exploited to deter-
mine sample values of the kernel of the IRT. The entire procedure involves
nothing more complicated than matrix multiplication and the solving of simultaneous
linear equations. Once the minimum kernel is found, the impulse areas can be deter-
mined, again by the solution of simultaneous linear equations. All of these operations
can be routinely carried out by an electronic digital computer.

The method does require knowledge of the spacing of the impulses. This condition
is equivalent to knowing the pitch period for a voiced sound of speech, or the fundamental
frequency of a musical tone. These can usually be determined by direct inspection or by
frequency analysis of the signal (see Section VI).

1.3 DEFINITIONS AND TERMINOLOGY

It is desirable to have some names by which to refer to the parameters peculiar to
IRT. The following terminology will be used. Let

N,

s(t) = Z a_h(t-(n-1)T),

n=N1

where



N1 and N2 are integers

T is a real positive number
h(t) is a real bounded time function of duration <DT, D a positive integer
{an} is a set of real numbers.

Then
(i) s(t) is an impulse response train.

(ii} T is the period of s(t). (Note that the use of the term "period" does not imply
that s(t) is periodic.)

(iii) h(t) is the kernel of the IRT s(t).

(iv) D is the span of the kernel h(t), that is, the number of periods "spanned" by the
duration of the kernel.

(v) the {an} are the impulse areas.




II. HOMOGENEOUS EQUATIONS RELATING IMPULSE RESPONSE TRAIN SAMPLES

The characteristic feature of an IRT

N,

s(t) = z a_h(t-(n-1)T)

n=N1

is that it is a sum of equally spaced signals {anh(t-(n—l)}, each of which has the same
wave shape as the kernel h(t). If the duration of h(t) is less than or equal to the period T,
the wave shape of h(t) will be obvious by inspection. If, however, the duration of h(t) is
longer than T, then the signals will overlap, and their waveform can no longer be deter-
mined by direct inspection of s{t).

Nevertheless, it might be suspected that the wave shape of s(t) is somehow con-
strained by the fact that it is a sum of equally spaced signals of the same wave shape.

We shall now show that such a constraint does indeed exist. In particular, it will
be shown that appropriately chosen samples of the waveform of s(t) are alternately
signed coefficients of a set of linear homogeneous equations with samples of the wave-
form of h(t) as solutions.

2.1 HOMOGENEOUS EQUATIONS FOR A PARTICULAR CASE

It is convenient first to demonstrate the existence of this relation for a particular
example. Let us construct an IRT s(t) with the kernel shown in Fig. 4. For convenience

b4

the time origin is chosen at the beginning of the kernel waveform. Let s(if) be the IRT

N,

—

s(t) = Z a_h(t-(n-1)T),

n=N1

a portion of which is shown in Fig. 5. The figure also shows the waveforms of the
{anh(t-(n—l)T)} plotted on separate time axes. Note that h(t) has span 2 (see definitions
in sec. 1.3). To show that there exists a relation between the samples of s(t) and the

kernel h(t), proceed as follows (see Fig. 6).

h(t)

Fig. 4. The kernel hit).
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Fig. 5. Individual waveforms {a nh(t—(n—l)T )} and their sum s(t).

Starting at the time origin, and working in both directions, divide the time axis into
T-long intervals, called periods. Number these periods 1, 2, 3, ... inthe direction
of increasing time, and 0, -1, -2, ... in the direction of decreasing time. Note that
this causes the signal aph(t—(p—l)T) to begin in the pth period.

Now, arbitrarily select one sample of s({t) from each period in such a way that
selected samples are spaced T seconds apart. Call any set of samples of s(t) chosen
in this way a set of periodic samples of s(t). Label the sample from the first
period Sl, 1’ from the second period sz’ 1 etc. Now arbitrarily select a second set
of periodic samples of s(t), different from the first., Label the sample of this
set from the first period s

1.22 Sp 2 etc. In both sets then, the subscript scheme is

s period, sample in period’ These two sets of periodic sample pairs are shown in Fig. 7.
Call two such sets of periodic samples a set of periodic sample pairs of s(t).

Consider now the samples of a particular waveform aph(t— (p—1)T) taken at the same
times as the set of periodic sample pairs of s(t) selected above. Call these the coinci-
dent samples of aph(t—(p—l)T). Label the two coincident samples of aph(t—(p—l)T) in

the pth period (that is, the period in which aph(t—(p—l)T) begins) aphl 1 and aph1 2
’ 14
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Fig. 6. Division of the time. axis into numbered periods.

Fig. 7. A set of periodic sample pairs of s(t).
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Fig. 8. Coincident samples of the {anh(t—(n—l)T)} for two periods of
the chosen set of periodic sample pairs of s(t).

respectively. Label the two coincident samples of a h(t-(p-1)T) in the (p+1)*? period
aphz, 1 and aphz’ 2 respectively. Since in our example h(t) has span 2, a_h(t-(p~1)T)
will be zero in all the other periods. Figure 8 shows the coincident samples of the
{aph(t—(p—l)T)} for two periods of the chosen set of periodic sample pairs of s(t), and how
these coincident samples are labeled.

Now, consider the selected samples of s(t) from any two consecutive periods, say the
second and third. These samples of s(t) can then be written as a linear combination of
samples of h(t) as follows.

Sp,1 = 3yh, ; +ayhy

1

Sp,2 = 2Py a1 35k

S3,1° ah, 1 *+azhy

83,2 " axhp, 2+ 23l o (1)




Perform the following operations on these equations.
(i) Multiply the equations in ascending order of subscripts of Si, j by the "coinci-
dent samples® of h(t) in descending order of subscripts.
(ii) Multiply alternate equations by -1
(iii) Add the equations.

Carrying out these operations yields

Sy, 10 2 = 21hy by 5 t25h) by 5
=Sy ahy 1 =-ayhy phy  m3phy ohy
(2)
S3,182,1 7 ayh, by 2t azhy by,
=83 281,17 —ayh, ohy - aghy by
Sp 1P 278y 2P 1t 83 1By 5 7S5 ohy,, = 0- (3)

Equation 3 is a homogeneous equation relating the samples of the IRT to the coincident
samples of the kernel. Since the method by which Eq. 3 was obtained does not depend
upon which two consecutive periods the samples of s(t) are chosen from, similar equa-
tions hold for sample pairs from every two consecutive periods. That is, the samples

h , h , h , and h of h(t) must satisfy the set of homogeneous equations
1,1’ 1,2 2,1 2,2 ==

h =0

S1, 102,27 81,202, 1 7 82, 18,2 7 82,201
S, 102,27 82,202 1% 83,1By, 2783, 28,1 70
s3, 102, 2783 o0y 1784 10y, 2784 28,170
etc.
Or, more compactly
{55, 172, 275p, 282, 17541, 111, 275pe1, 201, 1% 0F (4)

These equations show that the periodic sample pairs of s(t) are linearly dependent,
and that their dependence is determined by the "coincident" samples of the kernel h(t).
Another way of looking at these equations is to note that a necessary condition for h(t)
to be a kernel of s(t) is that the coincident samples of h(t) satisfy the homogeneous equa-
tions written for the correct span.

Equations 4 are a special case of a more general result, which shows that similar
homogeneous equations of order 2D exists for IRT s(t) having kernels of span D.

For example, for D = 1



Sp,1P1,27 81,201,110

Sp,1t1,2 7 82,2P,1 =0

S3,1M,2 7 53,201,170

for D = 2 we have the equations just derived, for D = 3,

Sy, 113,27 51,283, 1 7 52, 1Bp 27 S, 2B2 1 F S5 1Py, 7 S5 oy =0

Sp, 113,27 52,203, 17 53 102 2 7 83,20z 1 F Sy 1Py, 078y By =0

S3,1%3,2 7 53,203, 17 54, 1P2, 27 4,282, 1% S5, 1Py, 27 S5 2Py, 1 70

and, in general, for an s(t) with a kernel h(t) of span D
D=1
Spti, 1°D-j, 2~ Sp#j, 2"D-j,1f = O
=0
where p is the integer assigned to the first of any D consecutive periods of s(t). This
general result is proved in section 2.2. This proof may be omitted without breaking
the continuity of the presentation.

2,2 HOMOGENEOUS EQUATIONS FOR THE GENERAL CASE

Equations of the form of Eqs. 4 hold for the general case of IRT s(t) of period T, with
kernel h(t) of span D. The proof follows.

As in Fig. 6, divide s(t) into numbered periods of length T. Starting with the pth
period, choose a set of periodic sample pairs from D consecutive periods of s(t). These
samples of s(t) can be written as sums of the coincident samples of the waveforms
{anh(t—(n—l)T)}. Using the notation established in the previous section, we find that these

equations are
f D W D-1
pti,1 " Z Sptj-il, 1

< (5)

[
—

D
N
pti, 2 p+J—1 i,2
i=1 .
- Jj=0.

e

10




Equations 1 is a special case of these equations.
h L
Multiplying the equation for the first sample of the (p+j)t" period by hD— i, 2 and that
for the second sample by —hD-j 1

r D Y D-1
Sp+jp lhD_.]l 2 - z ap+-]_1h1v lhD_J: 2
i=1
<
D } (6)
~Sp+j, 2"D-j,1 7~ Z Ap+j-iM, 2"D-j, 1
i=1 .
. > ]-_-O

Equations 2 is a special case of these equations. Summing these equations on the

index j gives the equation
1

Sp+j, 1°D-j, 2 7 Sp+j, 2"D-j,1 7 Z

D-1 D-
i=0

D

Z a54j-i0i, 1Pp-j, 27 By, 2Pp-j, 1) (7
j=0 i=1

The right side of this equation is shown to be zero as follows. First, consider the

term for whichi =m and j = n. As n takes on the values of j from 0 to D - 1, note that
D - n takes on each of the values from D to 1 once and only once, i.e., all values
in the range of i. Similarly, as m takes on the values of i from 1 to D, D - m takes
on each of the values from D - 1 to 0 once and only once, that is, all values in the range
of j. Hence, for the term for whichi = m and j = n, there exists one and only one other
term in the summation for whichi =D - nand j = D — m. This term is

+n-mPp-n ‘hnﬂ,?.—hD—r' Zh'n,l)

T AL 9y - i

a
134

which is the negative of the term for which i = m and j = n. Thus the terms of the sum-
mation on the right side of Eq. 7 cancel in pairs, and the sum is zero.

Thus the set of sample pairs {hi l’hi Z}D of h(t) satisfies the set of homogeneous
equations ’ B

D-1

Sp+j, 1°D-j,2 ~ Sp4j, 2"D-j,1 = O (8)
j=0
where p is the integer assigned to the first of any D consecutive periods of s(tf). Equa-
tions 4 is a special case of these equations.

By a further generalization of the above derivation using methods similar to that dis-
cussed at the end of the previous section, it is possible to select any even number k
of samples per period and write corresponding homogeneous equations of order Dk, It
is sufficient for the purposes of this investigation to consider only two samples per
period, because of the difficulties inherent in solving simultaneous linear equations in
many unknowns.

11



III. PROPERTIES OF THE SOLUTIONS TO THE HOMOGENEOUS EQUATIONS

It has been shown that any set of periodic sample pairs of an IRT are alternately
signed coefficients of a set of linear homogeneous equations, with coincident samples of
the kernel as solutions (Eqs. 8). Thus, for any set of periodic sample pairs of an
arbitrary waveform s(t), a necessary condition for a set of numbers {hij} to be the
coincident samples of a kernel of span D is that these numbers solve the appropriate
homogeneous equations of order 2D. This result suggests that we should attempt to find
samples of the unknown minimum kernel of an IRT by selecting many sets of
periodic sample pairs of the IRT, and solving the appropriate sets of homogeneous
equations to find the coincident samples of the kernel. This approach is, in principle,
the one that will be used. There are problems, however, which prevent its direct
application.

(i) Solving the homogeneous equations is not a sufficient condition for a set of num-
bers to be the coincident samples of a kernel. Just because a set of numbers will solve
the homogeneous equations does not guarantee them to be coincident samples of a kernel.
For example, the trivial (zero) solution solves every set of homogeneous equations, but
is certainly not the solution we seek. Our first objective, then, will be to find a sufficient
condition for a solution to the homogeneous equations to be the coincident samples of a
kernel.

(ii) For the cases of interest, the solution will never be unique. This follows from
the fact that whenever the homogeneous equations have a unique solution, it is always
the trivial solution, which is of no interest. Otherwise, the equations have a P-
parameter infinity of solutions, and we are faced with the problem of selecting one from
this infinity of solutions. Rather than trying to resolve this problem in detail, we shall
focus our attention on one particular nontrivial solution, the l1-parameter solution. It
will be shown that for IRT of finite duration the coincident samples of the minimum
kernel are always found as l-parameter solutions to the set of homogeneous equations
written for the proper span.

(iii} The span D for which the homogeneous equations are to be written is not
known. Since we are going to consider IRT of finite duration, we can assume that the
kernel is of finite duration, but we have no knowledge of just how long a time it lasts.

In connection with our study of 1-parameter solutions, we shall discover a method of
finding the span of the minimum kernel which is always applicable when the begin-
ning and ending of the IRT are known.

We shall confine ourselves here and in Section IV to an investigation of the proper-
ties of the solutions to the homogeneous equations for just one set of periodic sample
pairs, that is, we shall try to find just two samples of the kernel per period. Later we
shall use our results to determine as many samples of the kernel as we desire. For the

present, we shall consider methods of solving the problems posed above for just one
set of periodic sample pairs.

12




3.1 ACCEPTABLE AND UNACCEPTABLE SOLUTIONS

Suppose that a set of periodic sample pairs is selected from some IRT s{t), and the
corresponding homogeneous equations are solved. Since the equations are homogeneous,
there will always be a solution. The solution may be the trivial one, a l-parameter
solution, a 2-parameter solution, and so on. The problem is to determine whether any
of the P-parameter infinity of solutions can be coincident samples of a kernel of s(t).

In any case, it is clear that the solutions can always be divided into two mutually
exclusive categories.

(i) Those solutions that are coincident samples of a waveform that can be a kernel
of s(t). Call these acceptable solutions.

(ii) Those solutions that are not coincident samples of a waveform that can be a
kernel of s(t). Call these unacceptable solutions.

The definitions of acceptable and unacceptable solutions need some amplification if
they are to be used to test any particular solution {hi'} to a set of homogeneous equa-
tions. Specifically, a solution is acceptable if the following equations, hereafter called
the generating equations of s(t),

s h h

p, 1= 2p-D+1°D,1 T 2p-Dt2fp, 1 t o T30

(9)

h h +ah

s D2t tagh

p.2~ 2p-D+1™D,2 T 2p-D+2

can be solved for the impulse areas {ai}. Equations 1 give an example of these equa-
tions. This criterion obviously guarantees the {hij} to be an acceptable solution by
actually showing how the periodic sample pairs of s{t) can be reconstructed. If the
generating equations cannot be solved for the {ai}, then the solution {hij} is unaccept-
able.

As examples of acceptable and unacceptable solutions, consider an s(t) which is
an IRT whose kernel has span D. The existence of at least one acceptable solution is
guaranteed, namely, the coincident samples of the kernel. The existence of at least
one unacceptable solution is also guaranteed, the trivial (zero) solution. It is of interest
to note that for any waveform of finite duration, there is some span for which the homo-
geneous equations have an acceptable solution. This result is more obvious than might
be supposed, since it follows readily from the observation that any waveform of finite
duration can be considered to be an IRT merely by letting the waveform itself be the
impulse response (kernel), and using one impulse. Then the homogeneous equation
written for a span which includes the whole waveform will have solutions that are the
same periodic pairs used as the coefficients of the equation.

Since this result is necessary later, we shall formalize it in a theorem.

THEOREM 1. Let {sl’ 18] 20

odic sample pairs from any waveform s(t) for some period T. Then there is at least

a8y l’sN,Z} be any set of N consecutive peri-

one span for which the homogeneous equations have an acceptable solution.

13



Proof: The homogeneous equation for span N is

N

Z Sn. 1PN+1-n,2 ~ Sn, 2PN+1-n,1 - O

n=1
This equation has the acceptable solution

hj, k- Sj, K

that is, the samples of the IRT itself. This is a solution because the terms of the equa-
tion cancel in pairs, giving zero. It is acceptable because it can generate the original
samples with impulse areas a, = 1 and a, = 0, 1 <n <€ N. Thus the homogeneous equa-
tion written for span N always has an acceptable solution. // (// denotes the end of a
proof, / part of a proof.)

3.2 A SUFFICIENT CONDITION FOR AN ACCEPTABLE SOLUTION

Before proceeding with the theorem, which gives a sufficient condition for a solution
to be acceptable, it is convenient to introduce some matrix notation. Let s(t) be an
arbitrary waveform of N periods numbered from 1 to N, increasing in the direction of
increasing time. For any set of periodic sample pairs, the homogeneous equations of

order 2D are

Sl,lhD,Z—Sl,ZhD,l L +SD, lhl,z-sD,Zhl,l =90
Sa, 18D, 2 ~ Sz, 2p, 1 T *Spu1, 1,2 T Spez, 2P, 170
SN-D+1, 18D, 2 ~ SN-D+1,2PD,1 * - T8N, 1P, 2 T SN, 2P, = 0. (10)
This set of equations will be given the matrix notation
N _
[SDJ Hpl = o], (11)

where

S].,]. —Sl’z * e e . SD,]. —SD,Z
S2,1 S22 “ro- Spi1,1 TD41,2
N | _
53)-
LSN—DH, 1 "°N-D+1,2 SN, 1 SN,z |
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[ Bp, 2]

hpy

hy 2

—hl, 1—

and 0] is the column zero matrix having the appropriate number of entries. Note that

N and D do not refer to the number of rows and columns in any of the matrices, but
the number of rows and columns can be computed from these numbers.

It is convenient to establish the following notation also. If s(t) is an IRT having a
kernel h(t) of span D, the periodic sample pairs of s(t) can be written in terms of the
coincident periodic sample pairs of h(t) by the following generating equations:

hD,l +a—D+3hD—1,l +"'+alhl,1

hD—l,Z +"'+Slh1,2

1,1 - 2-D+2

1,2 =~ 2 p+2'p, 2 t 2_D43

(12)
SN,1 7~ N-D+1P'D, 1 T @N-D+2Pp-1,1 - P ANt
SN, 2 = 2N-D+1'D, 2 ¥ @N-D+2PD-1,2 t -+ T 8NPy, 2
This set of generating equations can be written in matrix notation.
N7 _ [ N N
SV] = [HD} AD:" (13)
where
[ S1,1]
s
1,2
sNp =
SN, 1
_°N, 2]
hD,lhD-l,l e e e hl,l 0o o0 O
bp, 2Pp-1,2 by, 0 0 0
[ N] °© Bp,1 Bpo,i B0 0 -
H =
D 0 hy, by, - - - - By ,0 0
0 0 hD, 1 PO, hl, 10
0 0 hD, 5 hl, 20
etc.
- i
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and

Finally, it is convenient to write a notation for the Z(D—l)th-order determinant of the ma-

trix [Hg_l] Denote this determinant by |HD| For example, for D=3 this determinant is

hyp Bpp By O
'H3|= h3,2 hZ,Z hl,Z 0

0 h3,1 hZ,l hl,l

0 h3,2 hZ,Z hl,Z

It will now be shown that a sufficient condition for an acceptable solution to the homo-
geneous equations is that IHDI # 0.

THEOREM 2. Let {sl’ 1°51,2" 5N, 17 5N, z} be any set of N consecutive sample

pairs from a waveform s(t) for some period T. Let {hD, 29 hD, LRRRE hl, 2 hl, 1} be

a solution to the set of homogeneous equations {Sg} HD] = 0] such that IHDI # 0.

Then there exists a unique solution to the generating equations SN] = [Hg} Ag]

Proof: The theorem will first be proved for D = 3 and N = 5 to illustrate the pro-
cedure to be used in the general proof.
The equations for which a uniqué solution allegedly exists are SS] = [HS:] AS:I or

3| 3
1. sl’1 =a_1h3,1 +a.oh2,1 +alh1,1

2. sl’z=a_1h3’?_+a0h2’2+a1h1’2

3. 8 1= aghs y +aph, | +a5hy

4. 85 5= aghs p +ayh, 5 +ash ,

5. 83 = ajh; | +azh, | +azh

6. 83 5= a)h; , +a5h, 5 +a3h)

T 844+ ahy | *agh, | +ash,

8. 84 5° ayhs 5 +agh, 5, +ash 5

9. 85 1 ° aghs | +agh, ; +agh;
10. 55'2 = a3h3,2 + a4h2’2 + ashl’2
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Now, one of hl 1’ h1 2 is not zero. For,. if both are zero, the last column of IH3| is

zero, hence |H3| = 0. But this is not so by assumption. Assume that hl is not zero.

1
Then the given equations [Sg] H3] = 0], written out,

S1,103,2 = 81,203 1 85 1By 5 =8y php 4S5 by 5 -85 o0y =0

Sa,13,2 = 82 2h3 | *83 10y 5 =83 ohy | t8y by 5, -8y ohy =0

3,103, 2 = 83 oh3 | +84 1By 5 =S4 by | +85 1By 5 -85 o0y =0,
th _th

imply that the 107, 8 3 3

upon the five equations that immediately precede them. For, let equations 5-10 be mul-
tiplied by h3, 2 —h3’ 1’ hz’ 2 —hz, 1’ hl, 29 _hl, 1 respectively. The left-hand side is
zero, by the third homogeneous equation above. The right-hand side is zero for reasons

, and 6th equations of Ss] = [HS] As] are linearly dependent

discussed in section 2. 3 in connection with the derivation of the homogeneous equations.
Thus the 10th equation is linearly dependent upon the previous five equations. Equa-
tions 8 and 6 are similarly dependent upon the five equations that precede them. Thus,
the equations remaining to be solved are

l. s =a .h +aoh2’ +a1h

1,1 =203 1 1,1

2. 8y p=a_jhy 5, t+ah, ,+ah ,

3. 85,7 aghs | +a;h, | +a,h

4. 85 5% agh3 p *a)hy 5 +axh) 5

5. 83 17 ajh; ; +azh, ; tazh)

78417 aghy | *aghy | +ash

9. SS,l = a3h3,1 +a4h2’1 +a5h1’1.

The determinant of the coefficient matrix for this set of equations is (h1 ’ 1)3 |H3 l , which
cannot be zero, by assumption. Since there are seven equations in seven unknowns,
and the coefficient matrix has a nonzero determinant, the solution exists and is unique.
If hl,l = 0, then hl,Z
be dependent on the others, and a similar proof carried out to show that a unique solu-

cannot be zero. Equations 5, 7, and 9 can then be shown to

tion exists. /

The general proof follows along the same lines. The equations for which a unique

solution allegedly exists are SN] = [HN] Ag] Now, one of h; ,, h1 is not zero.

D , 2

For, if both are zero, the last column of IHDI is zero, hence IHDI = 0. But this con-
tradicts an assumption of the theorem.

Assume that h1 1 is not zero. Then the N-~-D+1 homogeneous equations [SD]I)] HD] =

0] imply that the 2Nth, Z(N—l)th, ..., 2(N-D+1)*? equations of Sg] = [Hg] Ag] are
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linearly dependent upon the (2D-1) equations immediately preceding them. There-
fore, these equations may be removed from consideration, since they are implied
by the others. This leaves 2N - (N-D+1) = N + D - 1 equations in N + D - 1 unknowns,
that is, the first 2(D-1) of the original equations remain, along with the first of
each of the remaining pairs of equations. The determinant of the coefficient matrix
. N-D+1
is (h1 1) 'H

tions in N + D - 1 unknowns have a solution, and it is unique. This solution also

Dl’ which cannot be zero, by assumption. Hence, the N + D - 1 equa-~-

satisfies the remaining equations, since they were linearly dependent upon the equations
having this solution.

If hl, 1 0, then hl, 2 cannot be zero. Then the first equation of each of the last
N - D + 1 pairs can be eliminated, and the proof proceeds as before, with the deter-
minant of the coefficient matrix being (b, Z)N—D+1 IHDI ./

3.3 1-PARAMETER ACCEPTABLE SOLUTIONS

As we have previously noted, one question that arises in the solution of linear equa-
tions is that of the uniqueness of the solution. It may be that the solution is unique, or
there may be a 1-parameter, 2-parameter, etc. infinity of solutions. These possibil-
ities present special problems in our case, for which the equations are homogeneous,
and therefore the only unique solution is the trivial one, which is useless as the samples
of a kernel. Therefore, we must always expect to be presented with an infinity of solu-
tions in any case of interest.

Of the possible solutions of interest, the simplest that we can expect are the 1-
parameter solutions. Not only are these the simplest, but they are easiest to inter-
pret. The meaning of a 1-parameter solution is that every possible solution is just a
constant times any other possible solution; that is, all of the solutions are scaled
versions of each other. Thus if any one of the 1-parameter solutions is acceptable, they
all must be (except, of course, the zero solution). This follows readily by noting that
if {a} are solutions to the generating equations (Eqs. 9) for some {h } then -%ai
are solutions for {kh } The interpretation of this is quite simple. The IRT

P

s(t) = Z a h(t-(n-1)T)
n=N,
could just as easily be generated with the kernel scaled by k and the {an} scaled by
1/k. That is,

P

a
s(t) = Z Tnkh(t—(n-l)T).

n=Nl

18




Thus, whenever the homogeneous equations have a l-parameter infinity of solutions, and
one of these solutions is acceptable, they must all be acceptable (with the single noted

exception of the zero solution). So it is permissible to speak of a 1-parameter accept-

able solution.

If it is somehow known in advance that a set of homogeneous equations will have a
l-parameter solution, .then one of the unknowns can be assigned a value before solving
the equations, for example, hl, 1= 1. [It is assumed the value of the unknown is not
constrained to be zero by the equations (see Sec. VI).] The resulting equations will no
longer be homogeneous, and will have a unique solution for the remaining unknowns.
Thus the unknown to which the value was assigned becomes a norm for all the rest of
the unknowns, scaling the whole solution to its assigned value. This situation is espe-
cially desirable since there is no doubt about which of the infinity of solutions is to be
selected — one is as good as the other, since they are just scaled versions of each other.

Besides the properties already noted, l-parameter solutions to the homogeneous
equations (acceptable or not) have another interesting and useful property. This property
follows from a theorem that we shall prove (Theorem 3), which asseris that 1=f_ the homo-
geneous equations for some span D have a l-parameter solution, then

(i) the homogeneous equations for spans >D have a >1-parameter solution,

(ii) the homogeneous equations for spans <D have only the trivial solution.

What this means is that if for some span the homogeneous equations have a l1-parameter
solution, then it is the only span for which they have a 1-parameter solution. Further-
more, it is the minimum span for which a nontrivial solution exists. Therefore, if a

l-parameter acceptable solution is known to exist for some span, it must be the accept-

able solution of minimum span. We shall prove that for waveforms whose beginning

and ending are known e is always guaranteed to be a l-parameter acceptable solution

for some span — and we are now guaranteed by Theorem 3 that it is the acceptable solu-
tion of minimum span.

THEOREM 3. If a set of homogeneous equations has a l-parameter solution,
(i) the homogeneous equations for spans >D have a >1-parameter solution, (ii) the
homogeneous equations for spans <D have only the trivial solution.

Proof: (i) Suppose that the coefficient matrix of the homogeneous equations for span
D has rank 2D - 1, that is, rank% [ng’ = 2D -1. Then in the coefficient matrix for
span D + 1, the first 2D columns are columns of [SD] without the last row, and the last
2D columns are the columns of [ngl without the first ;'ow. Therefore, the first and last
columns of {Sg +1] are dependent upon the center 2D columns. Therefore rank [Sg +1] <
2D, and the homogeneous equations have a 2-parameter or greater solution. /

(ii) Now suppose that rank [Sg] = 2D ~ 1, that is, the homogeneous equations

[Sg-’ HD] = 0], have a l-parameter solution. If there is a set of homogeneous equations
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for the same sample pairs with lesser span which has a P-parameter solution, P 21,
then, by the previous result, the equations for span D cannot have a 1-parameter solu-

tion. Since this contradicts the assumption that rank Iislg] = 2D - 1, no homogeneous

equations for span <D can have nontrivial solutions. Therefore, if a set of homoge-
neous equations for some span D have a l-parameter solution, then it is the nontrivial
solution of minimum span. //

3.4 SOLUTIONS FOR WAVEFORMS WHOSE BEGINNING
AND ENDING ARE KNOWN

We now demonstrate that for waveforms whose beginning and ending are known, that
is, waveforms of finite duration, there always exists a l1-parameter acceptable solution
to the homogeneous equations written for some span.

The phrase, "whose beginning and ending are known," requires better definition. Let
s(t) be a waveform known on a finite interval divided into N periods, and let s(t) be
zero for D - 1 periods at the beginning and ending of the interval. Then s(t) is called
a complete waveform. Note that completeness depends upon the value of D (see Fig. 9).
Thus we shall refer to D-complete waveforms. If an IRT s(t) with kernel h(t) of span D

)

|
N

<
%

|

|
41 t

|

|
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(b)

3
3
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K

Fig. 9. Complete waveforms: (a) for D = 3;
(b) for D=1,

is D-complete, it is clear that no impulse response starting outside the beginning of
the interval can make a nonzero contribution to s(t), hence the "beginning" of s(t) is
known. Similarly, the condition also implies that the last impulse response occurring
within the interval cannot make any nonzero contribution outside the interval, hence the

"ending" of s(t) is known. When a waveform is complete, and the periods are numbered
from 1 to N, the homogeneous equations take on a particular form. In the matrix [Sg:',
L

the first row has zeros in its first 2(D-1) entries, and both of the remaining two entries
cannot be zero; the second row has zeros in its first 2(D-2) entries, and not all of the
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remaining entries can be zero; etc. At the bottom of the matrix, the last row has zeros
in its last 2(D-1) entries, and not all of the remaining entries can be zero; the second
from the last row has zeros in its last 2(D-1) entries, and not all of the remaining
entries can be zero; etc.

For example, if we assume that the period sample pairs for N= 9and D = 3 are

sl, 1= 0 sl'2 =0
52,1 =0 Sz,z =0
s4’1 =3 s4,2 =3
55,1_1 s5,2=—3
56,1-'1 56,2=3
S7,1°0 S7,2 =71
SB,l =0 58,2 =0
59’1 =0 59,2 =0
then the coefficient matrix [Sg:l of the corresponding homogeneous equations is
0 0o o o0 1 -2]
0 0 i -2 3 -3
1 =2 3 -3 1
[s_,ﬂ =13 -3 1 3 -1 -3
1 3 -1 -3
-1 -3
| 0 1 0 o B

Now, since for a D-complete IRT the "beginning" and "end" of the IRT are known,
it might be expected for a kernel of span D that the impulse areas before the Dth period
and after the (N—2D+2)th period would be zero. If this were not true, the IRT would
be expected to be nonzero outside the interval between its assumed "beginning" and
"ending."

The following is a corollary of Theorem 2 to show that these impulse areas are
zero for solutions satisfying the condition IHDI # 0,

COROLLARY OF THEOREM 2. Let {Sl, 1’ Sl, YRR SN, 1’ SN, 2} bé any set
of N consecutive sample pairs from a complete waveform s(t). Let

{hD, 29 hD, 17 hl 2 h1 , l} be a solution set of the homogeneous equations
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{Sg} HD] e 0] such that IHDI # 0. Then there exists a unique solution for the gener-

D
Proof: There exists a unique solution for the generating equations, by Theorem 2. /
The assertion that a;, =0, -D+2<i<D, and N ~2D + 2 <i < N can be proved as
follows. Consider the 2(D-1) generating equations for the first D - 1 periods. Since

ating equations SN] = [HN} Ag] such that a; = 0, -D+2<i<DandN-2D+2<is<N.

s(t) is complete, these equations are homogeneous and the determinant of their coef-
ficient matrix is IHDl , which is nonzero by assumption. Hence the solutions are zero
only. Therefore a; = 0, -D+2 <i<D.

Now, consider the 2(D-1) generating equations for the last 2(D-1) periods. Again
they are homogeneous and the determinant of their coefficient matrix is !HD, +# 0. Hence
the solutions are zero only. Thereforea, =0, N-2D+2<i<N. //

The theorem that will be proved next will show that for a complete waveform the

acceptable solution of minimum span is 1-parameter and gives unique impulse areas.
THEOREM 4. Let the homogeneous equations [Sg] HD] = 0], D =2, for the peri-

odic sample pairs of a complete waveform, periods numbered 1 to N, have rank <2D.
Then (i) If the rank of the equations is <2D - 1, the homogeneous equations for some
span <D have a l-parameter solution. (ii) If the rank of the equations is 2D - 1 (that
is, they have a l-parameter solution), their solution is acceptable. Furthermore, the
impulse areas corresponding to this solution (for a fixed norm) are unique with :aLi =0,
~-D+2<i<Dand N-2D+2<i <N,

Proof: The proof will be by induction, that is, the theorem will be proved for D=2
and then shown to hold for any D if it holds for D - 1.

Assume D =2, Let {hl, l’hl, z’hz, l’hZ, 2} be one of the nontrivial solutions to

the homogeneous equations [SIZ\IJ HZ] = 0]. These equations are

Sy,1P1,2 ~ 82,2011 =0

S2,102,2 = 52,2121 83,10y, 2 7 83,281, ) =0
(14)

SN-2,1P2,2 = SN-2, 282, 1 ¥ no1, 1P, 2 T SN-1, 2,1 = O

SN-1,1P2,2 7 SN-1, 2121 =0

(i) Suppose that the general solution to the homogeneous equations is more than 1-
parameter, that is, rank l:Slz\I:I < 3. It will now be shown that rank I:SII\I] < 2. For, sup-
pose that rank [:SII\I:’ = 2. Since the columns of [Sll\l] are the first two columns of [Slz\l],

the first two columns of [Slg} are linearly independent. Then if s, # 0, columns 1, 2,

1
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and 3 of [Sg} must be linearly independent, since there are only zeros in the first row

of columns 1 and 2. Hence rank LSIJJ = 3, which is a contradiction. Therefore rank

)

Is, 1= 0 then s, , # 0, by assumption. Then columns 1, 2, and 4 of [Slz\l-’ are
independent, and the same result follows. -

But rank [SII\I] # 0, since it is assumed that the entries of [SII\I:! are not all zero.

Therefore rank [Sll\l] = 1, and the equations [Sllvj' HI] = 0] have a 1-parameter solution. /

(ii) If the general solution to the homogeneous equations is 1-parameter, then it can
be shown that IH?_, # 0.

For, suppose that IHzl = 0. Then

It is convenient to interpret this as meaning that the two columns are multiples of some

g
other column 1,1 , where neitherof g, ,, g are zero. Thus
g » 1,1’ 81,2
hy =018 h, 17028
hy 2=b181,2 h, 2=D0,8,

Substituting these values in the homogeneous equations (Egs. 14) gives

b (s, 18,2752, 281,1) =0
byl 181,2752, 281, 1) tby(s3 18 2753 28,1 =0
by(sn_2 181, 275N-2, 281, 1) T P1(5N-1, 181, 275N-1,281,2) = ©
by(sn-1, 181, 275N-1, 281, 1) = 0.

Since both of b1 and b2 cannot be zero (otherwise the hi . would be zero, but it has

been assumed that the solution is nontrivial), these equations reduce to the homogeneous
equations

S, 181,2 "S3,28,1 0

S3 18,2 ~53,28,1 “°0

SN-1,181,2 75N-1,281,1 7
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Therefore, in the matrix [Slzv} columns 1 and 2 are dependent, and columns 3 and 4

are dependent. Therefore the maximum number of independent columns is 2 and of rank

2
Then, by the corollary of Theorem 2 there exists a unique solution for the generating

[Slgr] < 3, which contradicts the assumption that rank [SNj| = 3. Therefore IHZI + 0.

equations [sﬂ = [le\l] Aﬂ suchthat 2, =0, -D+2 <i<D and N-2D+2<i<N. /

Now the theorem will be proved for any span D, under the assumption that it holds
for all spans from 2 toD - 1.

(i) Assume that the general solution to the homogeneous equations is more than 1-

parameter. Then rank [Sg} < 2D - 1. It can now be shown that the first (or the last)

2(D-1) columns of ':Sg:l, which are the coefficients of the homogeneous equations for

a span of D - 1, cannot have rank 2(D-1).

For, suppose that the rank of the first 2(D-1) columns is 2(D-1). Then, if SD,l # 0,
columns 1 through 2D - 1 must be linearly independent, since columns 2D - 1 has a non-
zero entry, SD, 1’ in a row where the first 2(D-1) columns have zero entries. If SD,1 =0,
then SD, 0 ? 0 by assumption, and hence, by the same argument, the first 2(D-1) columns

and the last column are linearly independent. But, in either case, this means that rank

[Sg:] = 2D -1, which is false by assumption. Therefore, the homogeneous equations

for span D - 1 are of rank <2(D-1).
Now, the homogeneous equations for some span less than D must have a l-parameter

solution. Otherwise, since the theorem applies for every span less than D, application

at each successive level eventually implies rank [Sll\l} = 0, which is impossible because

the entries of [SI;I:I are not all zero. /

(ii) Assume that the homogeneous equations [Sg:] HD] = 0] have a l-parameter solu-

tion. Then the determinant IHDI #0.

For, suppose that IHDI = 0. Then consider the corresponding matrix [Hg—l] By

performing the three following operations on this matrix, it can be converted to a matrix
of coefficients of a set of homogeneous equations of order 2(D-1) for periodic sample
pairs of a complete waveform for span D - 1.

(a) Take the transpose.

(b) Rotate the matrix about a horizontal center line, that is, interchange row m and
row 2(D-1) ~m; 1 €<m<D-1.

(c) Multiply the even numbered columns by ~1.
Since these operations can do no more than change the sign of the determinant, the
determinant is still zero. Hence the corresponding homogeneous equations have a non-
trivial solution. Now, since the theorem is true for all spans up to D - 1, there exists

some span X <D for which the homogeneous equations for the periodic sample pairs that
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are the entries of HD] have l-parameter acceptable solution with unique impulse areas.
Thus the elements of the matrix HD] can be written as samples of a complete IRT with
kernel g(t) of span X <D, The matrix HD] can therefore be expanded in terms of the

matrix GX] and the impulse areas {bi}D_X'l'1 as follows.
i=1
B = - - — - u 7
hD, 2 0 0
hD, 1 0 . G}il
=by| . +b, .4 by sy
Gx
h 1,2 GX 0
Lh 1,1 B | —0 | l_0 B
Substituting this expansion in the homogeneous equations [Sgi' GX] = 0] gives
[ ] [ ] [TN] o~ 1]
0 0 [SX} Gyl
0
b _ N = 0]
D-X+1 | . +by_x [SX:’ Ggll+ .. +b, | .
— Nﬂ
| |-

Now it can be shown that this expression implies that [S}N(jl GX] = 0].

Assume that b1 # 0. Then consider the first entry of the last matrix, which is the

first entry of [S}l\g] GX]. Clearly, it must be zero, since the first entry in all of the

other terms is zero. Consider the second entry of the last matrix. This entry plus the
second entry of the second from the last matrix is zero. But the second entry of the
second from the last matrix is the same as the first entry of the last matrix, which has
just been shown to be zero. Hence the second entry of the last matrix is zero. This

process can be continued until all of the entries of the last matrix are shown to be

zero. Hence [S)l\i:l Gyl = 0l.

If b1 = 0, the same process can be applied to the first term on the right for which
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bi # 0, with the same result.
Since |G | #+ 0, the equation SN G+ ] = 0] implies that the columns of SN are
X X X X
linearly dependent. This implies that in the matrix [SD}, the first column is dependent
upon the 2X -1 columns which follow it, and the last column is dependent upon the
2X - 1 columns which precede it. Hence the rank of [Sg} cannot exceed 2(D-1). But

this is a contradiction since it was assumed that rank {Sgil = 2D - 1. Hence IHDI # 0.

Then, by the corollary of Theorem 2 there exists a unique solution for the gener-

ating equations SIS:I = [Hg} Ag} such thata; =0, -D+2<i<DandN-2D+2<i<N.//

This theorem shows that for a complete waveform there is always a l-parameter
acceptable solution. For, by Theorem 1 there is always an acceptable solution, and by
this theorem either that acceptable solution is l1-parameter, or there is a l-parameter
solution for some lesser span. Furthermore, by Theorem 3, this l-parameter solu-
tion is the acceptable solution of minimum span.

3.5 AN APPROACH TO FINDING THE SPAN OF THE
MINIMUM KERNEL

The results that we have achieved thus far suggest a way of finding the span of the
minimum kernel for IRT of finite duration. Suppose that the homogeneous equations
are set up and solved for spans D=1,2,3, ..., etc. Then, by Theorem 3, as long as
the span is less than the span for which there is a 1-parameter solution, the equations
will have only the trivial solution. As the span is increased, however, there must
eventually be a nontrivial solution, by Theorem 1, and this must be the l-parameter
solution, and by Theorem 4 it must be acceptable. The approach, then, is to look for
the span for which the first nontrivial solution occurs. But we should like to propose
a variation of this approach which is closer to the method that we shall actually use
because it has advantages for machine computation.

It is possible to make another interesting observation from Theorem 4. One of the
key points in proving the theorem was showing that any solution to the homogeneous
equations written for a span greater than the minimum could always be represented as
the samples of an IRT with kernel of shorter span. This process continued until it was
ultimately shown that the acceptable solution of minimum span consists in samples of a
kernel that can generate any solution for a higher span. This means that the minimum
kernel will always be able to generate any kernel of larger span as an IRT.

Since we are going to look for a l-parameter acceptable solution, we might as well
choose one of the unknowns as the norm (we shall choose hl, 1) and constrain it to have
a nonzero value. Now we set up and solve the homogeneous equations for span
D=1,2,3,..., etc. Since the equations for spans less than the span for which there is
a l-parameter solution can have only the trivial solution, the assigning of a nonzero
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value to h1 1 will cause these equations to have no solution for this constraint. On the
’

other hand, when the span for which there is a 1-parameter solution is reached, the

equations will be solved and give a unique solution. Thus, when one of the unknowns is

constrained to be nonzero, fie_ lowest span fo_r which a solutiqn exists _}5 also the lowest

span E‘ which an acceptable solution exists.

It is tempting to say at this point that the lowest span for which the l-parameter
acceptable solution exists is the span of the minimum kernel. Unfortunately, we are
not justified in saying this because it may be that this span is lower than the span of the
minimum kernel. Suppose, for example, that the homogeneous equations were written
for an IRT whose minimum kernel had span 2. Furthermore, suppose that the coin-
cident samples of the second period of the kernel happened both to be zero for the
chosen set of periodic sample pairs of the IRT. Then it is clear that the homogeneous
equations written for span 1 would have a solution, namely, the coincident samples in
the first period of the kernel. Thus, it is not possible to determine the span of the

minimum kernel by solving just this set of homogeneous equations. For span 2, however, ,

the homogeneous equations written for the vast majority of periodic sample pairs will
have l-parameter solutions, so the span of the minimum kernel can be found by solving

many sets of homogeneous equations written for different choices of periodic sample
pairs.
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IV. SOLVING THE HOMOGENEOUS EQUATIONS IN THE PRESENCE OF NOISE

Since it is our ultimate goal to apply the theory of IRT to physically generated sig-
nals, we must be prepared to deal with perturbations of these physical signals from the
IRT idealization. These perturbations could result from any number of unknown factors,
such as additive noise, variations in the pulse spacing, or time variations in the impulse
response. The net effect of these perturbations from the ideal will be to cause the
homogeneous equations to have only the trivial solution (except for the uninteresting
case in which we let the impulse response be the signal itself), which is of no use to us.

To avoid this, we shall take the point of view that the signal that we are attempting
to analyze really is an IRT, but it has been altered "slightly," because of various dis-
turbances, which will be represented by additive noise. Then we should like to form
an estimate of the kernel of this underlying IRT. One approach to Securing this esti-
mate is to note that if the departure from the ideal is "small," the homogeneous equa-
tions written for the span of the kernel of the underlying IRT should "almost" have a
solution, that is, there is some set of numbers {hij} that make the left-hand side of the
equations "nearly" zero. We propose, then, as a reasonable approach, not to try to
solve the homogeneous equations outright, but rather to find that set of numbers which
comes "closest" to solving the equations, in the sense that it minimizes the mean-
square value of the left-hand side of the equations. For example, for D = 2 this means
finding the {hij} that minimizes the mean square of the set of residuals rp, where

{

h h h

Sp, 102,27 5p, 172, 1 * Spa1, 101, 2 7 Spa1, 2P1,1 7 rp}'

This leads to difficulties immediately because the obvious solution is to make all of
the hij = 0, in which case {rp=0}! In order to avoid this undesirable result, let us sup-
pose that the underlying IRT, if it were not perturbed from the ideal, is of the type that
has a l-parameter acceptable solution for some span. Then, proceeding as we did
previously, we assign a nonzero value to one of the hi" and this coincident sample of
the kernel becomes a norm that scales all of the other samples. This solves our prob-
lem, if, for example, we were to set hl,l = 1 in the example for D = 2, then setting
the other hij = 0 no longer minimizes the mean square of the T but some other values
must be sought.

" One effect of the perturbations has been to rob us of our former technique
(section 3.5) for determining the span of the l-parameter solution. It is no
longer of any value to check for the minimum span for which a solution exists
when one of the hij is constrained to be nonzero, since the only exact solu-
tions are now the trivial solutions. A similar procedure is still available, how-
ever, and will be discussed below.

Now we turn to the details of the method for finding the "best" solution to the homo-
geneous equations.
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4.1 ESTIMATING THE SOLUTIONS TO THE HOMOGENEOUS EQUATIONS

We shall assume that a zero-mean noise signal e(t) is added to an IRT s(t). The
addition of this noise gives rise to the perturbed IRT S(t) = s(t) + e(t), from which we
desire to find a best estimate ﬁ(t) of the true minimum kernel, h(t). It is therefore nec-
essary to define the meaning of best estimate.

The first step is to discover the effect of the noise on the homogeneous equations.
For convenience, the simplest case, for D = 1, will be used in the discussion. For N
periods of s(t) the set of homogeneous equations for D = 1 is

{s1,101,2 = 83,200, 1 = O}ilil' (15)
The noise signal e(t) causes the observed samples to deviate from the true values. The

true values can be written in terms of the perturbed samples as follows.

N

Si,1 75,17 %1
N (16)
i,2=5%,2°¢

S .
L2

Substituting these in Eqgs. 13 gives

~ ~ - N
{(Si, 178,10y, (8 2-e; o) by = 0} .

or

{si, 10,2 785,20y, 70y 08,1 By g8 z}i=1

or

~ ~ N
{si, 11,2 =5, 21,1 ri}.=l’ (17)

where r; = h1 2811~ hl, 184, 2

S1nce the residuals r; are unknown, Eqgs. 15 cannot be solved even if they are con-
sistent, which they almost certainly will not be for N > 2. Hence the true values of the
quantities hl, 1 and hl, o, must remain unknown.

Primarily as a matter of convenience, the criterion used to define the best esti-
mate ofAthe trueAvalues of the unknowns hl,l and hl, 2 shall be that the estimated
values, hl, 1 and hl, 2 minimize the mean-square values of the residuals ri.7

The quantity to be minimized then is

N
1 2
'Nz (i 10,2 si,Zhl,l)
i=1

Mz

R
N

-
n
—
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or, with the usual notation for the average,

2 ~o ~ 2
i = (55,00, 27 5,20, (18)

Setting the partial derivatives of this expression with respect to h1 1 and h1 2 to zero

for a minimum gives

~2 ~ ~ _
Si,101,278,15;,2M,1°0
(19)
~ ~ ~2 _
Si, 285,110,280 =0

Since, in general, there is no reason for these equations to be dependent, the solution

to these equations as they stand is ?11, 5 = /ﬁl, 1= 0 which minimizes riz, but is not very
satisfying. To avoid this result, the value of one of the unknowns will be fixed and used
as a norm.

If the variable hl, , is chosen as the unity norm, then there is no derivative with
respect to this variable, and the first of Egs. 19 does not exist, which leaves

~ ~ ~2

Si,25,1 " Si,21,170 (20)

to be solved for the best estimate of h1 1 This optimum value is

1

N 51,254, 1
h, , =—
1,1° " —
5, 2

If the variable h1 1 is chosen as the unity norm, Egs. 19 reduce to

Si,1P,275,15,27 0 (21)

which has the solution

~ 51,15, 2
h) ,=———

32

i, 1
which is not necessarily the same as the solution to Egs. 20. In general, the solution
will depend upon which variable is chosen as the norm. This irritation can be elimi-
nated without much inconvenience in the simple case of D = 1 by adding the constraint
that the estimated values of the noise added to both samples of a given sample pair be

equal. In that case the solution is independent of whichever variable is chosen as the
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norm. For D > 2, however, the cases of most interest, this constraint yields non-

13 P at are n i i
linear equations that are not at all convenient., Therefore the dependency of the esti-

equations is to be retained.
Ty
Anyone familiar with statistics will recognize that the mechanics of finding h1 1 and

Pal
h1 2 is the same as that for finding the linear regression line for the set of points

~

S5 1,'51 2} N which is constrained to pass through the origin. Equations 20 and 21
’ ' =1

would correspond to different assumptions about the direction in which the mean-square
error is to be minimized; that is, whether the error is in the first or second sample of
the sample pairs. The assumptions that form the starting point for the derivation of
Egs. 20 and 21 are quite different from those from which the regression line is derived.
The following graphical interpretation is intended to give some insight into the deriva-
tion of Egqs. 20 and 21.

2nd
sample

Fig. 10. Periodic sample pair space for span 1.

Figure 10 is a plane on which points whose coordinates are the periodic sample
pairs {Si 1754 2} N are plotted. If there were no noise, and these really were the
! P =1

samples of an IRT having a kernel of span D = 1, then these points must all lie on a
straight line through the origin. This is so because the homogeneous equations are the
equations of a straight line with zero intercept. The slope of this line is the ratio of
the kernel sample pairs which are coincident with the sample pairs of the IRT. Thus,
finding this straight line is equivalent to finding the desired samples of the kernel.

In Fig. 10 we assume that the coordinates of the points are periodic sample pairs
of an IRT with kernel of span D = 1, with noise added to it. Because of the added noise,
these points do not lie on a straight line through the origin. Then the problem is to fit
a best line to the set of points. A graphical interpretation of the process by which this

31



"best" line is determined is worth studying.

It has been decided that the "best" line is to be determined by choosing the values of
~ —
h1 1 and h that minimize the mean of the squares of the res1duals, riz. Let the

values of the re51duals r. corresponding to the values h1 1 and h1 2 of the unknowns be
A i
r;. Now, corresponding to the sample pair point (s 1’ s 2) we can visualize an "esti-

mated sample pair point" (s ) lying on the "best" 11ne

s
, 1771, 2
AN AN

si, lhl, 5 si, 2'hl’ 1 - 0. (22)

This point is the best estimate of the true value of the sample point before the noise was
added. The exact location of this point cannot be determined, however, since it depends

upon the choice of impulse areas. Then, the estimated values of the noise, ’e\i 1 and
Qi 5 are the differences between the estimated and measured sample pair points:
A _ ~ _ N
€1,17 5,1 7 84,1
A o~ _AQ (23)
€i,27 %i,2 7 54,2

The values of these estimated errors cannot be determined either, until the impulse

areas are chosen. Figure 11 shows possible locations for the measured and estimated

2nd 2nd n N . N
sample noise h, ,e. ;-e. , =T,
sample ,25,1 Ti,2 i
hy 2
.2 1
2 [T~ 7
]
]
I
|
i
A |
- |
2 || Ist
1,2 b——— —~ noise
I's, 1 sample
[
by
| |
| 1
|
| |
[
| I
.
|
|
| 1 Ist
A sample
a0 SN2

Fig. 11. Graphical interpretation of the residual ?i with hl | as norm.

points in the sample pair plane, along with the "best" line given by Eq. 22. Equations 23

show that an "estimated noise sample pair" plane can be superimposed upon the sample
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A
pair plane, with a set of coordinates having their origin at the point (s; ,, é\i »). The
point (§'i 1,'51 2) in the sample pair plane is the point (ei 1’ € 2) in the estimated noise
sample pair plane. The residual ?i is given by

A ~ A A

ry=h; .6 ) =hy 1€, (24)
which is a straight line in the estimated noise sample plane. If h1 1 is designated as
the unity norm, the equation of this line becomes

A N ~ ~

Si,2 7 By, 28,1 T Ty (25)

which is plotted in Fig. 12. This diagram makes it clear that the "best" line is the one

that minimizes the mean square of the vertical distance from the line to the sample pair

2nd 2nd . A . a
sample noise G2
sample ! o
Vhy 4
A
- %2 !
i,2 i f
|
|
|
|
|
|
|
n | Ist
S0 [T TASF I A noise
! A | 1 1 sample
r. Y
i | |
| |
| !
| |
l |
| |
| |
! |
J ! 1st
AgL Nl sample
5,000 8,2

Fig. 12. Graphical interpretation of the residual ?i with h;, , as norm.

s’

point. Similarly, if hl is chosen as unity norm, Eq. 24 becomes

A A AN
e, 17 B1,1%,2 Ty
which is plotted in Fig. 13. In this case, the best line is the one that minimizes the
mean square of the horizontal distance from the line to the sample pair point. From
the geometrical interpretation, it is obvious that the "best" line will depend upon the
choice of norm.
From the preceding discussion and Figs. 12 and 13, it is clear that the location of

the estimated sample pair point (’s\i l’gi 2) cannot be determined from the knowledge of
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(gi l’gi 2) and ?i’ since this information does not determine the values of e |
and e 2- Therefore, any point on the best line is as good as any other point

2nd

sample
hy,2
S2fp——————7 1
I
A oA j
fi=%,2 |
) L/ Fig. 13.
S~ ——=77"77 &1=° . . ~ A
When the estimated sample point (si 175§ 2)
is chosen so that €, , = 0, then the error

~ i1
e o is the negative of the residual /r\i. Here

h1 1 is chosen as unity norm.

st
sample

| b—m_—_——————— e ——— -

ERRR
for the location of (gi, 1’ gi, 2).

The essential difference between the method used here to determine a "best" line
and the standard regression-line technique is the fact that both 'svi, , and '§i’ 5 are con-
sidered to be "noisy," whereas in the usual regression problems the true value of one
of the coordinates is considered to be known exactly, and the other to be a linear func-
tion of it, but perturbed slightly by some unknown process. This perturbation is
assumed to account for its displacement from the true line in a direction parallel to its
coordinate axis. It is the mean-square value of this error, then, that is minimized in
the usual regression problem. In this problem, however, it is a function hl, 28,1
hl, 184, 2 of the two errors whose mean square is minimized, but the result is the same.

In the special case under discussion (D=1), it is possible to relate the mean-square
residual to the mean-square error. By choosing the kernel amplitudes so that there is

no error at the sample points Ei 1’ that is, gi 1= 0 (this can always be done), all of the

error will occur at the sample points gi ,+ Then
N _ h N _ VaS ’
7 ™,1%,27 T%,2

if h

this case, as shown in Fig. 13. This means that for D = 1 there is always a choice of

1.1 = !+ Thus, the mean-square residual is equal to the mean-square error for

kernel amplitudes for which minimizing the mean-square residual is in fact minimizing

the mean-square error. Unfortunately, for D > 1 such an interpretation of the residuals
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is not possible. Otherwise, the extension of the ideas developed for the case D=1 to
D > 1 is straightforward. Instead of fitting a straight line to a set of points in two
dimensions, a hyperplane is fitted to a set of points in 2D dimensions. The plane is
fitted by minimizing the mean-square distance from the sample pair points to the hyper-
plane in a direction parallel to the axis for the samples of s(t)that are the homogeneous
equation coefficients of the unknown chosen as the norm.

For an IRT of N periods, the set of homogeneous equations for span D is

EESE! (26)

The addition of a noise signal e(t) to the regular pulse train s(t) would cause the

observed samples to deviate from the true values. The true values can be written in

terms of the observed samples as in Egs. 16. Define [Eg] as the noise sample matrix

[— -
1,1 ®1,2 %2,1 ©2,2 * °D, 1 ®D,2
2,1 2,2 ©3,1 ©3,2 D+1,1 ®D+1, 2
°N-D+1,1 ®N-D+1,2 * o N1 N2 |

Substituting Eqs. 16 in Eqs. 26 gives

[%'g] Hp] = [Eg] HLJ. (27)

L1 PR s | anvranlaf

= 3 - +Ll. ax
LLICT pPCL1iUU, oaiiipac 2y
e

The indexing of the mairices in Eqgs. 26 is based on
the IRT. For the purposes of the following discussion it is convenient to change to the

conventional "row, column" system of indexing matrices. Let

~ _ ~N

[U]= [SD] (28)
be an N - D + 1 by 2D matrix with Ui, j as the element in the i'® row and jth column. Let

X] = Hp] (29)
be an N - D + 1 by 1 matrix with x; as the element in the i row. Let

[m=hﬁ (30)

be an N-D + 1 by 2D matrix with w, ] as the element in the ith row and jth column.

Equations 26 in the new notation become

[0] x] = [w] x]. (31)
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Defining the residuals {ri} N-D+l .4

N N-D+1

I‘i= Z Wi, JXJ

=1 ) i=1

allows Eqs. 31 to be written

2D N-D+1 |
Z Uy jxj =Ty (32)
=1 i=1

As for the case of D=1, we desire to find the X] that minimizes the mean-square
values of the residuals, relative to some choice of a norm. It is sufficient to minimize
the sum of the squares of the residuals, since the mean can be found by dividing by N -
D + 1. Then the quantity to be minimized is

N-D+1 N-D+1 [N-D+1 2
2 ~ -
Z Ti T z Z Y, 3% (33)
=1 i=1 =1

It is convenient to defer the choice of the norm for the time being.
Setting the partials of Eqs. 33 with respect to each of the variables to zero for a
minimum gives the 2D equations

2D [N-D+1 2D

ui,jui,k xj =0 . (34)
j=1 i=1 k=1

Dividing these equations by N - D + 1, the number of original equations, allows the

replacing of the sums on i by averages. The equations become

2D 2D
Z u.i’ jui. K x;i = »0
=1 Jk=1
or
2D 2D
, 35
)= k=1
where cj K- ﬁ'i jﬁi K* These will be called the normal homogeneous equations because
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they are identical to the normal equations obtained in linear regression problems.
If X, is selected as the normed variable, then the equation for which k = n must be
omitted, since there is no partial derivative with respect to X Instead, the equation

x, = value of norm

can be substituted. This gives 2D equations in 2D unknowns, which guarantees a solution.
The matrix [C] of coefficients Cj K can be conveniently expressed in terms of the

matrix [ﬁ] as
[c] = a-pey™" [T]T (D],

where [ﬁ]T is the transpose of [U]. This is easy to show. For, in general, if

[c]= [V][T]
for some 2D by N - D + 1 matrix [V], then
N-D+1
%, j = ic, i?‘{i, n
i=1

Now if [V] = (N-D+1)"} [U]T, then

.= (N-D+1)7! T,

Yk i,k
and
N-D+1
¢ = (N-D+1)"! A
i=1
=4, j'ﬁ'i, k

as, in fact, is the case.

4.2 HOW TO FIND THE SPAN OF THE MINIMUM KERNEL IN THE
PRESENCE OF NOISE

One of the difficulties to be overcome in finding the minimum kernel is that its span
is not known. A strategy for determining the duration was given in section 3.5 for the
ideal "noiseless" case whenever a l-parameter acceptable solution is known to exist.

It was suggested that the homogeneous equations be set up and solved for D=1, 2,...,
etc. until a nontrivial solution is obtained, which would then have to be the acceptable
solution of minimum span.

This method cannot be used in the "noisy" case because the homogeneous equations
are almost never consistent, and therefore only the trivial solution exists. The method
described here of fitting a "best" solution to the homogeneous equations by solving the
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normal homogeneous equations guarantees an answer, but not a solution, for any set of
homogeneous equations. A strategy similar to that for the "noiseless" case could con-
ceivably be used if there were a test whereby the correct span could be recognized when
encountered.

Such a test does, in fact, exist. The test consists of solving the normal equations
for span D= 1,2..., etc. and examining the behavior of the residuals obtained by sub-
stituting the solution to the normal equations back in the original homogeneous equa-
tions. When the assumed span is correct, the residuals will, in general, be noticeably
smaller in magnitude. The explanation for this phenomenon is as follows.

As a preliminary notion, it must be appreciated that the rank of the coefficient
matrix of the normal equations (Eqgs. 34) is the same as that of the coefficient matrix
of the homogeneous equations. Since we have shown that the coefficient matrix of the
normal equations is the coefficient matrix of the homogeneous equations multiplied by
its own transpose, the following theorem is sufficient to prove the assertion.

THEOREM 5. Let [A] be an m X n matrix. Then rank [A]T [A] = rank [A].

Proof: Let rank [A]T = r. Then the r'® compound’ of [A], [A](r), has at least one
nonzero entry.

Consider the product of the compound of [A]T with the compound of [A]. By the

Binet- Cauchy theorem, 9

alT™ (a1 < ((a17a) "

(r)
Since the diagonal elements of ([A]T[A]) are the sums of the squares of the elements

in the corresponding columns of [A](r), they cannot all be zero. Hence rank [A]T [Al=r.
By a well-known theorem, rank [A]T [A]< r. Therefore, rank [A]'T [A]l=r.//

In general, the "noisy" homogeneous equations for which the "best" solution is to
be found will have only the trivial solution if the number of equations is equal to or
greater than the number of unknowns. That is, even though the "true'" equations have
a l-, or more, parameter solution, the noisy equations do not, because the addition of
the noise destroys the dependency of the equations. If the noise is small compared with
the signal, however, then it might be expected that the equations are "almost depen-

dent," a property generally known as ill- conditioned.10 This property is poorly defined,
but for a set of n equations in n unknowns a measure of it might be the size of the
determinant of the coefficient matrix relative to its own minors. The smaller the deter-
minant, the more ill-conditioned are the equations.

Since, by Theorem 5, the rank of the normal equations is the same as that of the
homogeneous equations for the "noiseless" case, it is reasonable to expect that if the
addition of noise to the homogeneous equations changes dependent equations to ill-
conditioned equations, the corresponding homogeneous equations would be similarly
changed.
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In order to see how the test for the minimum span works, the solutions to the nor-
mal equations must be considered for three different cases: for D less than, equal to,
and greater than the minimum span.

When D is less than the minimum span, the "noiseless" homogeneous equations
have only the trivial solution, and so do the "noiseless" normal equations. But the nor-
mal equations are modified by deleting the equation resulting from setting the derivative

with respect to the normed variable to zero, and inserting the equation

X, = value of the norm,

where X, is the normed variable. This procedure is based on the assumption that the
"noiseless" equations have a l-parameter solution. Since this is not the case, the
equations that are solved are very different from the correct normal equations,
namely the unmodified equations. Therefore the solutions will, in general, be very
different from the correct solution — the trivial solution. Substitution of the solution
back in the original homogeneous equations will therefore give large residuals.

When D is equal to the minimum span, it will be assumed that the "noiseless"
homogeneous equations are l-parameter. Then the "noiseless" normal equations are
also l1-parameter, and the modified equations yield the correct solution if x, #0. The
noisy equations are ill-conditioned, but this ill-conditioning is removed by the fixing
of a norm. If the noise is not large, then the solutions that are obtained are assumed
to be near the true solutions, since the equations are nearly the same. Substitution of
these solutions in the original homogeneous equations should yield residuals that are
much smaller in magnitude than those for lesser span because the "correct" set of nor-
mal equations was solved. A measure of the over-all magnitude is the rms value of
the residuals over all the homogeneous equations for each set of 2D sample pairs,
averaged over all the sets of sample pairs for the waveform. When this number shows
a significant drop for some span in the sequence, then the minimum span has been
encountered.

When D is greater than the minimum span, the "noiseless" homogeneous equations
have a more than l-parameter solution. The "noiseless" normal equations also have a
more than l-parameter solution. Thus the "noisy" equations will be ill-conditioned for
small noise, and this ill-conditioning is not removed by modification of the equations,
since only one variable is fixed. When the normal equations for a set of ill-conditioned
equations are solved, they almost always have a unique solution, the only exception
being the unlikely event that the equations really are dependent. By solving the ill-
conditioned equations, the unknowns that could have been assigned values to eliminate
the ill-conditioning effectively have values assigned to them in the solution process,
and the other unknowns solved in terms of them. These "uncontrolled" solutions are
useless and show up as a scattered distribution of points when they are plotted for a
sequence of samples of the waveform that is being analyzed.

The solution that is obtained will give an average rms residual less than or equal to
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that obtained from the equations for a lesser span. It is clear that it cannot be greater
because a "best" solution to the '"moisy" homogeneous equations for some span gives
essentially the same residuals for equations of greater span, the extra unknowns being
set to zero. Thus if a "best" solution for these equations of greater span gave a larger
average rms residual than those of lesser, this solution could not be the "best" solu-
tion, since a "better" solution has been demonstrated. This is not to say that the "best"
solutions for two sets of homogeneous equations of different spans (both equal to or
greater than the minimum span) are likely to be nearly the same, even though the aver-
age rms residual is nearly the same. It is a property of ill-conditioned equations that
solutions very different from the "best" solution may give residuals that are nearly the
same. A convincing example of this situation has been given by Hartree.lo

In summary, the test for the span of the "acceptable" solution of minimum span
is as follows. The "best" solution to the homogeneous equations is determined for D=1, 2,
3,..., etc., until a large relative drop in the average rms residual is encountered.
Then the span for which the drop occurs is the "best" estimate of the minimum span.
If there is no large relative drop until D = N, then either the noise is too great or the
minimum span is N.

Again, we cannot say that the lowest span for which an "acceptable" solution exists
is the span of the minimum kernel. As we have pointed out, we can only be sure that
we have found the span of the minimum kernel if the minimum span for which there is

an "acceptable" solution is the same for a large number of periodic sample pairs.
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V. ESTIMATING THE MINIMUM KERNEL AND THE IMPULSE AREAS

Our ultimate goal is to estimate the minimum kernel of a given IRT and to find a
set of impulse areas that can be used to synthesize the IRT from this kernel. We shall
now apply the results of our previous work to show how these objectives can be
achieved.

5.1 ESTIMATING MANY SAMPLES OF THE MINIMUM KERNEL

We have shown how one set of coincident sample pairs of an IRT with noise can be
estimated by finding the "best" solution to a set of homogeneous equations. It is now
possible to estimate as many samples of the kernel as desired simply by choosing
other sets of periodic sample pairs of the IRT and finding a "best" solution to the cor-
responding homogeneous equations. But, since we desire to normalize all of the
samples of the kernel to one specified norm, it is always necessary to include the
samples of the IRT that-are coincident with the norm as one set of periodic samples in
the chosen set of periodic sample pairs. The other set of periodic samples can be
chosen at will, and each time a new selection is made the normal homogeneous equa-
tions can be solved to give a "best" estimate of the coincident samples of the kernel.
The entire procedure is illustrated by the following simple example.

Let us construct an IRT with a kernel of span 2 having sample values

by, 1=t By =1 by 5=0h,, =0h, ,=1h, =1
Choose as impulse areas the numbers
ao=0, a1=0, az=0, a; = 1, ay = -1, a5=l, a6=0, a7=0.

Then the samples of the generated IRT s(t) can be found by adding. We then perturb
this exact IRT by an error signal e(t) to get the final set of periodic samples of the
perturbed IRT s(t) on the bottom line.

1 2 3 4 5 6 7 8 Period
Samples of : : : : I : II } }
a _h(t+T) 000 E 000 E i i : : E i E
a,h(t) : 000 I 000 ! : ; : : : :
a,h(t-T) : : 000 : 000 : : i : : :
a,h(t-2T) : : : 110 : 011 I : ! ! :
ah(t-3T) | ! ! E -1-101 0-1-1 | ! i |
agh(t-4T) : : i : : 110 : 001 } ! :
agh(t-5T) | ! ! ! } | 000 } 000 | !
ah(t-6T) | P ! { : 000 | 000 |
s(t) I 000 | 000 ! 110 i _101 | 10-1 o1l :ooo ! ooo:
e(t) E 000 i 000 E 0-101 000 E 001 | 000 ; 000 i 000 :
() | 000 | 000 ! 100 | -101 ! 100 : o11 | 000 I 000 |
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We shall now try to estimate the minimum kernel by finding "best" solutions to the
appropriate homogeneous equations for spans 1, 2, and 3. In each case the norm
ﬁl, 1= 1 will be chosen. Thus we shall choose as our two sets of periodic sample pairs
the first and second samples of each period, and the first and third samples of each
period. The steps in the process of solving the normal equations for each of these
cases are illustrated in Figs. 14, 15, and 16. Each figure shows the coefficient
matrices of the homogeneous equations [gg ], and the normal equations whose coefficient
matrices ar/e\ determined by premultiplying [gg ] by its transpose, and adjusting the last
row so that hl, 1= 1. Also shown are the solutions to the normal equations, the resid-
uals that are due to these solutions, and the rms residual for each set of normal equa-
tions. The average rms residual given at the bottom of the figure is taken as a measure
of the "fit" of the solutions to the normal equations. This last number is 0. 42, 0.27,
and 0.24 for D=1, 2, and 3, respectively.

We note the large drop in the average rms residual going from D=1 to D = 2, and
the subsequent relatively small decrease in this number for D = 3. We therefore con-
clude that D= 2 is the correct span. Now a problem arises that we have not noted
Refore. If we accept D=2 as the correct span, then we note that we have two estimates

h Since we have no information about which is "better,” we are free to use either

2,1’
estimate. Thus we shall take as our estimate of the coincident samples of the minimum
kernel

A _ A —E. ~ _ .L N _ N _ }_ A _ _7—

hy (=L hy ,=5. B 3=g By =08, =5 0 355

These estimated values compare only moderately well with the "true values," but it
must be appreciated that the errors introduced were quite large. The experimental

results of Section VII are more in keeping with what is encountered in practice.

5.2 FINDING THE IMPULSE AREAS

Since it may sometimes be desirable to find the impulse areas corresponding to an
estimated kernel, we propose a method for finding them, although no examples of its
use are given.

In the noiseless case, finding the impulse areas for just one set of periodic sample
pairs of an IRT and a given acceptable solution to the homogeneous equations is just a
matter of solving the generating equations (Egs. 8) for all p. Since the coefficients are
acceptable solutions to the corresponding homogeneous equations, a solution to these
generating equations is guaranteed.

In a practical case, the samples of the waveform to be analyzed are not likely to be
exactly the samples of an IRT. Also, the coefficients of the corresponding generating
equations will be only the estimated samples of the kernel as found by solving the nor-
mal equations. Therefore, an exact solution to the generating equations will almost

never exist. So a "best" estimate of the impulse areas must be obtained. The "best"
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estimate will be those impulse areas that minimize the mean-square error between the
samples of the IRT that they geﬁerate and the samples of the waveform that is being
analyzed.

When the number of impulse areas to be found is small, the "best" impulse areas
can be found by solving the set of normal equations corresponding to the generating
equations. The normal equations corresponding to an arbitrary set of linear equations
can be derived as follows.

Consider the following set of linear equations.

J I
Z cijxj =y; I2J
=1 i=1

Find the set of numbers {xj} J that minimize
=1

I J 2

Z i~ Z 157

i=1 j=1
Setting the partial with respect to Xy to zero gives the normal equation

I

d
Z Cikyi-z cikcijxj =0
=1

i=1
or
I I
I P S
j=1\i=1 i=1
The entire set of normal equations obtained in this way is

J /1 I J

Z 2 Cik%ij| % = Z CikYi

=11 i=1 i=1 k=1

In matrix notation these equations can be written

[c]T [c] x] = [c]T v).

For an entire set of homogeneous equations, the normal equations in matrix notation
would be

T T
AN, M AN,M| ,N|_|AN, M|~ =N, M
[HD ] [HD ]AD]‘[HD } Sp ]
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The notation of section 5.1 is combined with the circumflex and tilde to denote estimated
and noisy values, respectively.

When the number of impulse areas to be found is large, the round-off errors
involved in solving the normal equations for a large number of unknowns may cause
large errors in the solutions. In this eventuality, an iterative procedure would be pref-
erable if the convergence is sufficiently rapid. By taking advantage of the particular
arrangement of entries in the coefficient matrix of the generating equations, a useful
iterative procedure can be developed. Each new iteration is guaranteed to be better
than the last, and the first iteration should be "close."

The method is the following.

(i) Choose a set of initial values for the unknowns in the following way. Find the
initial estimate of the unknown a; by solving the normal equations corresponding to the
subset of generating equations in which a; appears as an unknown. These normal equa-
tions will have, at most, 2D-1 unknowns.

(ii) With all the other unknowns fixed at their values as determined in (i), choose as
the next estimate of the first unknown the value that minimizes the mean-square error
for all the waveform samples to which it contributes. Repeat this procedure for each
succeeding unknown. Each step involves solving the normal equation for DM (or less)
equations in one unknown. The new values selected in this way must be at least as good
as those determined in (i), since the value determined by the normal equation is the one
that minimizes the error, that is, the "best" value; therefore the previous value cannot
be better.

(iii) Repeat (ii) for all the unknowns until the mean-square error between the gen-
erated and the actual values is no longer reduced significantly.
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VI. SUGGESTIONS FOR CHOOSING THE NORM AND FINDING
THE IMPULSE SPACING

6.1 CHOOSING THE NORM

When the homogeneous equations are solved to find the periodic sample pairs, one
of the unknown samples must be designated as norm, and assigned an arbitrary value.
This value serves as a scale factor for all of the other unknowns when the solution is 1-
parameter. It does not matter which unknown is chosen as norm, as long as it is not
constrained to be zero by the equations themselves.

Consider, for example, the homogeneous equations

hy , =0
by “hy by =0
“hy )y —hy thy =0
hy » =0

The general solution to this set of equations is hl,l = hZ, X h1 2 hz,1 =0. If hl,l or
hz’z are given fixed values, then the equations can be solved. If h1,2 or hz’1 are
assigned nonzero values, the resulting equations do not have a solution because the rank
of the coefficient matrix will be less than the rank of the augmented matrix.6 Since the
homogeneous equations do not have a solution in the noiseless case, the normal equa-
tions will not yield a "best" solution in the noisy case. The remedy is to choose a dif-
ferent norm. Since we are primarily interested in the case in which the beginning of
the waveform is known, a norm can always be chosen from the "exposed" first period
with assurance that it is nonzero.

6.2 FINDING THE IMPULSE SPACING

A general method for finding the impulse spacing, or period as we have called it,
is unknown to the author. It is possible, however, to make some suggestions that are
useful for some types of IRT.

(i) Direct examination of the waveform. This rather obvious method can always be
used when the kernel amplitudes are constant or slowly varying over a number of periods
substantially greater than the span of the kernel. Within this interval the IRT is a
periodic or quasi-periodic function, and the period is equal to the spacing of the
impulses. Many physical signals that can be modeled as IRT exhibit such a "steady-
state' region from which the period can be determined.

Direct examination of the waveform may also reveal the period if the kernel has
relatively high sharp peaks that show up in the IRT at one-period intervals. In any

case, the waveform should be examined for any repetitive features that would suggest
the period.
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(ii) Examination of the autocorrelation function. As can be easily shown, the auto-
correlation function of an IRT is itself an IRT whose kernel is the autocorrelation func-
tion of the kernel of the original train. The autocorrelation function of

N

s(t) = z anh(t-nT)
=1

is

[+ o]
SS(o) S\ s(t) s(t+0) dt
—00

w N N
S_w Z anh (t-nT) Z amh(t-mT+<r) dt
n=1 m=1

N N o
Z Z anam . h(t-nT) h(t-mT+0) dt.
n=1 m=l1

Putting u = t - nT gives

N N o
Z Z aa. Sj_oo h(u) h(u+(n-m)T+0o) dt

n=1 m=l

S5(7)

N
= Z anamHH(O'—(m—n)T ),
n=1 m=l1

where

(o]
HH(o) = g h(t) hit+o) dt.

—~00
If the kernel is weakly correlated with itself for displacements greater than T/2, then
the autocorrelation function of the IRT will be a series of pulses of span D = 1, and the
period will be easily detected.

(iii) Examination of the spectrum. Since an IRT has features recurring at regular

intervals, it seems likely that the spectrum of the pulse train would have a peak at the
frequency corresponding to the period. The spectrum shows some other characteristic

features also. The Fourier transform of

N
s(t) = Z anh(t—nT)

~—

n=1

is
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N
S(jw) = H{jw) Z a e—JnTw.
n=1

The spectrum of an IRT is a periodic function in w, with "period" 2w/T, that is,
"amplitude-modulated" by the spectrum H(jw) of h(t). This characteristic "amplitude
modulation” may be difficult to detect, but if it should be apparent for a given waveform,
then the period of the IRT can be computed. This method is only likely to be useful if
the spectrum of H(jw) varies slowly over the interval 2n/T, and stretches over many
such intervals. Unfortunately, such a spectrum usually means that the pulse h{t) is
short compared with the time interval T, in which case the period, as well as the ker-
nel itself, will be quite obvious from the waveform.

(iv) Correlation with a sine wave. Correlation of s(t) with a sine wave to determine
the period of the IRT is exactly the same as looking for a peak in the spectrum of s(t).
Since the spectrum can often be easily obtained, there is no reason to use this method.
There is no guarantee that this method will work because of the drastic influence that
the spectrum of h(t) may have on the spectrum of the IRT. Also, sharp peaks in the
spectrum mean that the time function has periodicities, which are usually easy to
detect by direct examination of the waveform.
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VII. EXPERIMENTAL RESULTS

The techniques that have been developed will now be applied to particular examples.
Three different examples of the extraction of the minimum kernel are presented, and

their properties noted.

7.1 EXAMPLE 1

Figure 17 is an oscilloscope trace of the response of an RLC circuit to a short rec-

tangular excitation pulse. The trace of this excitation pulse is superimposed on that

Fig. 17. Actual kernel of the IRT of Example 1
(0.4 msec/cm).

of the response. By exciting the circuit at regular intervals with excitations of this

same rectangular shape but different amplitudes, the IRT shown in Fig. 18 was pro-
duced (the waveform is zero outside the interval shown in the photographs). The exci-
tations are superimposed for reference, and show the period.

Samples of this IRT were taken directly from the photographs, at intervals corre-
sponding to the smallest graticule division. The measurements were made to the nearest
half-division of the smallest graticule division. The corresponding homogeneous equa-
tions were then solved under the assumption of span of 1-5 periods, and the average
rms residual computed for each span. The average rms residual is plotted as a func-
tion of duration in Fig. 19. The graph shows a large decrease going from a duration of
1 period to a duration of 2 periods, thereby indicating that 2 is the "correct" span, that
is, the span of the minimum kernel.

In Fig. 20, the solutions to the homogeneous equations, as computed for spans of
1,2, and 3, are plotted superimposed on the actual kernel for comparison. The following

features are of interest.
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Fig. 18.
av. 10
rms 8
res. 6
4
2
0

The IRT of Example 1 (0.4 msec/cm). The bottom trace con-
tinues from the top trace.

Fig. 19. Average rms residual as a func-
tion of span for Example 1.

12345 span
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Fig. 20. Solutions of the homogeneous equations compared with
the waveform of the actual kernel for Example 1.

(i) The actual kernel is the minimum kernel. The actual kernel is essentially zero
after two periods, that is, it has span 2, and the solutions are very close to the wave-
form of the actual kernel for span 2.

(ii) The solutions for span 1 lie very close to the waveform of the actual span in the
first period. This feature will appear in the other examples, but no satisfactory expla-
nation can be given for the phe

(iii) For span 3 the solutions become "erratic" after the first period, no longer
tracing out a continuous curve. This feature will be more noticeable in the other
examples. This behavior is due to the ill-conditioning of the equations for spans greater
than the minimum, as predicted in Section IV. The "fit" in the first period, however,

appears to be very good.

7.2 EXAMPLE 2

The IRT of this example was supplied by Professor J. S. MacDonald. All of the
computations were made by the author without foreknowledge of the actual kernel.

Figure 21 is an oscilloscope trace of the actual kernel which generated the IRT of
Fig. 22. Figures 2la and 22a show the complete waveforms; Figs. 21b and 22b show
the same waveforms with expanded time scales. The zero amplitude line is the one on
which the 2-cm radius circles appear on the graticule. The waveforms are essentially
zero outside the intervals shown in the figures. The generating pulse waveform of
Fig. 2la is actually the response of a linear system to a relatively short rectangular

exciting pulse, and the regular pulse train was generated by exciting this linear system
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Fig. 21. (a) Actual kernel of the IRT of Example 2 (2 msec/cm).
(b) Actual kernel of the IRT of Example 2 (0.5 msec/cm).
The bottom trace continues from the top trace.
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Fig. 22. (a) The IRT of Example 2 (5 msec/cm).
(b) The IRT of Example 2 (0.5 msec/cm).
The bottom trace continues from the
top trace.
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Fig. 22. Continued.
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with a sequence of these pulses occurring at regular intervals. These exciting pulses
are shown in the bottom trace of Fig. 22a. The trace at the botiom of Fig. 22b can be
ignored. The period of the IRT in Fig. 22b is 2 msec (4 cm on the figure).

Samples of this IRT were taken

av. directly from the photographs at inter-
rms vals corresponding to the smallest grat-
res.

4000 icule division (20 sampes per period).

The measurements were made to the

nearest half-division of the smallest

3000 . s .
graticule division. The corresponding
2000 homogeneous equations were then solved
for spans of 1-5 periods, and the aver-
age rms residual computed for each
1000

span, and plotted in Fig. 23. This graph

shows that 2 is the "correct" span.
oL 1 14 span

12345 Figure 24 compares the solutions for

span 1,2, and 3 with the waveform of the

Fig. 23. Average rms residual as a func- actual kernel. The following features
tion of span for Example 2. .
are of interest.
(i) The actual kernel is not the

minimum kernel, since the span of the actual kernel is certainly greater than 2.
Figure 23 shows that the estimated samples of the kernel of minimum span 2 are nearly
coincident with the first two periods of the actual kernel. Examination of the actual ker-

nel shows that except for a scale factor it very nearly repeats itself every two periods.

SAVAN
R A

-100 L -0 L

AN /\' A [ e, e e,

T

8
T

-50 - Period

-100L

Fig. 24. Solutions to the homogeneous equations compared with the
waveform of the actual kernel for Example 2.
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Thus the actual kernel is itself an IRT whose kernel is the estimated minimum kernel.
Thus this estimated kernel is capable of generating any IRT generated by the kernel of
Fig. 21.

(ii) As in the previous example, the solutions for span 1 lie close to the waveform
of the actual kernel in the first period.

(iii) For span 3 the solutions show a marked "erratic" behavior after about the
middle of the second period. As before, this behavior is believed to be due to the ill-

conditioning of the normal equations.

7.3 EXAMPLE 3

The IRT of this example was generated artificially on a computer, and hence all the

samples are accurate to approximately 8 figures. The actual kernel was the function

tt-13)(t-31) e 0 10t 0<t< 200

This function is plotted in Fig. 25. The period was chosen to be 20 time units, and

600 %
[ ]

[ ]
®
[
[
200 ®
[ ]
®
'.

t
[
-200 |

i 2 3 4 5 6 7 Period

Fig. 25. Actual kernel for the IRT of Example 3.

the impulse areas selected from a table of random numbers (except for the
zero amplitudes, included to make the IRT complete). These impulse areas
are listed in Table 1. The samples of the resulting IRT taken every time unit
(20 samples per period) are listed in Table 2.

The homogeneous equations for these

samples were solved for spans 1-5, and

ay, 1000 — the average rms residual computed and
rms 800 plotted for each span. This plot indi-

res. 388 cates rather dramatically that 4 is the
200 "correct" span. The solutions for spans

0 1-5 are plotted in Fig. 27. The following

12345 span features may be observed.

Fig. 26. Average rms residual as a func- (i) The actual kernel is not the min-

tion of span for Example 3. imum kernel. Futhermore, the actual
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kernel does not appear to be a scaled repetition of the minimum kernel.
(ii) All five solutions match the actual kernel very closely in the first period.
(iii) The solutions show a very pronounced "erratic" behavior for span 5. Appar-
ently the accuracy of the samples caused the normal equations to become very nearly
dependent.

Table 1. Impulse areas for the IRT of Example 3.

Read from left to right and down the page.

The number following the

E is the power of 10 by which the decimal fraction is to be multiplied,

(4E15,8 format)

+.00000000€101
+e00000000E+01
-e53479000E+01
+¢30176000E+01
~-e¢31151000E+01
-«05763000E+01
+e27266000E+01
+428708000E+01
+¢34914000E+01
+429046000E+01
+440588000E+01
-e39843000E+01
+400000000E+01

+400000000E+01
+400000000E+01
+e97344000E+01
+¢81874000E+01
—e67619000E+01
+¢73260C0CE+01
~e49843000E+01
-013183Q000E+01
-+28105000E+01
-¢62035000E+01
-+ 78237000E+01
+462880000E+01
+400000000E+01

+6¢00000000E+01
+,00000000E+01
-o66023000E+01
~.19839000E+01
+461946000E+01
—e54909000E+01
+429316000E+01
+,60796000E+01
~-o59231000E+01
+.38856000E+01
~e98247000E+01
++56138000E+01
+400000000E+QO1

+4000000G0E+01L
++00000000E+01
++99760000E+01
-«09377000E+01
—+04811000E+01
-e42583000E+01
-+304563000E+01
+013486000E+01
-o8743T7000E+01
+040666000E+01
—e69977000E+01
+¢90804000E+01
+¢00000000E+01

Fig. 28. Actual kernel as an IRT generated by the minimum
kernel.

Period

It is not necessary to reconstruct the IRT from the estimated minimum kernel to
be certain that it really is a kernel for the given IRT. Figure 28 is a demonstration of
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Read from left to right and down the page.
E is the power of 10 by which the decimal fraction is to be multiplied,

Table 2. Samples of the IRT of Example 3.

(LE15.8 format) Tadble is continued on the next four pages.

There are 20 samples per period.

«00000000E
+00000000E
«00000000E
«00000000E
-+00000000E
-« 000000005
~40000C000E
~+00000000E
«00000000E
«00000000E
«00000000E
+00000000E
«00000000E
«00000000E
«00000000E
«00000000E
«00000000E
«00000000E
«00000000E
+«00000000E
+00000C00E
«00000000E
«00000000E
«00000000E
«00000000E
«00000000E
+000C0OCO0E
«00000000E
«00000000E
«00000000E
«00000C00E
+«00000000E
+«00000000E
«00000000E
«00000000E
«00000000E
«00000000EF
«00000000E
«00000000E
«00000000E

00
00
00
00
00
00
00
00
00
00
(o0]
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
(0]0]
00
00
00

+00000000E
«00000000E
«00000000E
~+00000000F
~«00000000E
~+0000C0COE
—«00000000CE
-+00000000E
«00000000E
¢00000000E
+00000QCOE
«000000COE
«00000000E
«00000C00E
20000C000E
«00000CO0E
«00000000E
+00000000E
«00000000E
¢00000000E
«00000000E
+0000GCO0O0E
+«00000000E
«00000000E
+00000000E
«00000000E
«00000000E
«0000CO00E
+00000000E
«00000C00E
«00000000E
+00000000E
«00000000E
«00000000E
«00000000E
¢00000000E
«0000000C0E
«00000000E
«00000000E
«00000000E

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

«00000000E
«00000000E
«00000000E
«00C00C00E
»00000000E
.00000000E
+00000000E
+3000Q0000E
»00000000E
«00000000E
«00000000E
«00000000E
«C0000000E
«00000C00E
«000C00COE
«00000000E
+00000000E
«00000000E
+00000000E
+00000C00E
«00000000E
«00000000E
+00000000E
+«00000000E
+00000000E
«00000000E
«00000000E
«00000000E
«00000000E
«00000C00E
+00000000¢E
«00000000E
«00000000E
+00000000E
+00000000z
+00000000E
«00000000E
«00000000E
«00000000E
+00000000E

61

00
00
00
00
00
00
00
00
00
00
00
0]¢]
00
00
co
00
00
00
00
00
00
00
1014
00
00
00
00
00
(0]
Y
00
00
00
00
00
00
00
00
(0]0]
00

+00032CG00E

J0CJ0C00E
«C0JC0000E
«000000C0E
«GOC00000E
«0C000000E
«000000C0E
«00000000E
«00000000E
«00000000¢%
«0CC00000E
«00000000E
«00000000E
«00000000E
«0000C0O00E
«0000G000E
«00GCO0000E
«00000000E
«00CS0000E
«00C00000E
«00000000E
«0000000CE
«00000000E
«00000000E
+00000000E
«00000000E
+00000000E
«00000000E
«00000000E
+00000000E
«00000000E
«00000000E
«00000C00E
«00000000E
«00000000E
«00000000E
«00000000E
+00000000E
«00000000E
«00000000E

The number following the




+00000000E
=+34844300E
-e22107291E
-e36725250E
e 77740017E
«11145898E
«72390170E
«44337918E
¢53594419F
~¢20200016E
-¢29808843E
=+ 70979243E
~e47321118E
~-e14685762E
«87040037E
«20249377E
«87688125E
+60935261E
¢21130473E
—=e60668052E
-e17524540E
«21838361F
«12829029E
-e70461074E
¢82124797E
«52063128E
«63982701¢
0 49463293E
¢24926641F
+95173091E
e49913446F
-¢51567698E
«56078113E
+18809140E
«28093569E
¢32415079¢
«26593408E
¢25468398E
«25933179E
«23670638E
«20071842E
-¢43938410E
~e10690264E
+60520407E
«97632501€
«94610301E
~¢37503833E
~e25347065E
~e58981174E
e54266179E
¢ 74864853E
«43814525F
«22413522F
-e¢569664C3E
~e24425328E
-e31977129E
-e¢34410110E
-e27916228E
-¢19124760E
-¢11017854E

00
04
04
03
03
04
04
04
03
(o223
04
04
04
04
03
04
04
04
04
03
04
03
03
02
02
03
04
04
04
03
03
03
03
04
04
04
c4
04
04
04
04
03
03
03
03
03
C4
04
03
03
03
04
0&
03
04
04
04
04
04
04

~¢17420328E
-e33734119E
-e17220408C
«00000000E
+93007859E
042711041E
«69305488E
¢34075798E
~e260360672E
-e23974182E
-e51707313E
-e68006661E
-+ 38874938E
-e77110699E
«12636952E
¢54062703E
¢85243957E
¢50597107E
«12802129E
-¢10297508E
-e85473718E
«27311828E
«55512310E
-e67196615E
«17178257E
¢33204716E
e63614649E
e 43043639E
¢ 1598 1353E
e 7T4685702E
-¢12918053E
~e34028844E
¢90660322E
021594615€
029620525E
+29757508E
¢26393325F
0 26474065E
¢25528924E
¢ 22866946E
¢89068221KE
~e4T7977487E
+81808007E
¢ 73869926E
010022604E
-¢13113787E
-e37042712E
-e20173733E
-21229943F
«57149379E
«27081135E
¢ 40993969E
«15001821¢E
—e11471922E
-e27282957E
-¢33996250E
-433279756E
—e25771733E
~e¢16968916E
-e92494586E

04
o4
04
00
03
04
04
04
03
04
04
04
04
03
04
04
o0&
04
04
04
03
03
02
02
03
04
04
o4
04
03
03
03
03
04
04
o4
04
04
04
04
03
03
02
03
04
04
04
04
03
03
o0&
04
04
o4
04
04
04
04
0&
03

—e27934767E
-¢30817392E
-e12394510CE
«31386868¢C
«10342823F
«51407153E
«62807506E
e23918747E
~<95361032E
-e26782140E
-e64452330FE
-e62505041E
~a30439366E
-e14662320E
015840430E
o T4482116E
e 19147489E
e 40263481E
«54688250E
—e13568452E
~e28332867E
«25684869F
-e61705169E
-e39718096E
«27678868FE
050666262E
060432269E
+36626698EF
«15753326E
060725169E
—e46254057€
—+83533084E
¢12482730E
0246 079806F
030839062E
«28079119E
« 263656853
«26398916F
«25012102E
021990765E
0 17411276E
-e41356854E
«27045126E
«84541408E
¢10042520E
—027092813E
-034339119E
-¢15057061E
¢10289260E
¢74512507E
¢38355576E
¢35969089€E
e 716871659F
—e16531974E
‘0294603845
—e34936590C
—-e31751822E
-023560855E
~¢14888228E
-+ 76003488E

62

04
04
04
c3
o0&
0&
04
04
03
04
04
04
o4
03
C4
04
04
04
03
04
03
03
01
02
03
04
04
04
o4&
03
03
02
04
04
04
04
04
04
04
04
03
03
03
03
04
04
04
04
03
03
04
04
03
o0&
04
04
04
04
04
03

~e33279302€E
-e26769341E
~+78327098E
e57277337E
«109423232E
« 7064154 2E
«54160572E
0«14257322E
-013399757E
~028598926F
-a70275735E
-+55376367E
~.22207565E
040082205E
218360037E
o 84806381E
«70707778E
+30346131E
-eB82155481F
-c15950482E
¢51025348E
0 20069058E
~049332470¢%
«10749052E
039408609E
«60223563E
¢53455033E
«30518535E
«1226805¢6E
052689341E
-e57205790E
022466305E
s15755042E
026247876E
¢31764380F
«27098155¢
0 26415T94E
026222175E
024389480F
021054843E
~e24257231E
—027942426E
o 44750752E
092448562E
e 95466704E
-e34645037E
~e30228063E
-e10243432E
e35416535E
e 76888329F
043378348E
029553586E
«7T2814699E
~020849292F
-231006271E
-+35013698E
~029934157E
~021332249E
~¢12900311E
-e60729976E

04
04
03
03
04
04

04
04
04
04
04
04
03
04
04
04
04
02
04
02
03
02
02
03
04
04
04
04
03
032
03
04
04
04
04
04
04
04
04
03
03
03
03
03
04
04
04
03
03
04
0&
02
04
o0&
04
o0&
04
04




-+ 4666T7868E
-+39705741E
«20917201€
«37360389E
«56119978E
060274249E
#53225463E
«34767698E
«83723622E
~e83762597E
-.132889879F
~e47368371E
~e28116417C
-+20881390E
«15938235E
«24052875E
-¢30585992E
¢33643849E
«12502247E
¢15910613E
«13626192E
«25788885E
¢12654119E
~e27400997E
~e13251217¢
-¢18055971E
~¢51027787E
-+37081725E
~e166&4550E
~e25426318E
«37372161E
«23385072E
«13832167E
«73065163E
~e96759895E
-e14196830E
~¢34534036LE
-¢25366458E
-¢11899602E
=e22583769E
0 24362469E
«22112135E
«14116150E
«22060445E
-e59934296E
-e94T749919E
-¢18028711€E
~¢12880791E
-«55874273E
~e62787785E
«30167364E
«43738523E
«29116677E
«73803451E
~e66229349E
-e11407672E
~+93009877E
«80543451F
«19281668E
e41811334E

03
03
02
03
03
03
04
04
03
03
04
04
04
03
04
04
03

04
04
04
04
04
03
04
04
04
04
04
03
03
04
04
01
03
04
04
04
04
03
03
04
04
03
03
03
04
04
03
01
03
04
04
03
03
C4
02
02
03
03

~e52592114E
-+30090401E
012244869E
¢ 43633012E
e58346421F
«29826334E
¢51480881E
«277899B4E
«30620322E
~¢10709761E
~¢31770608E
~e44911996F
~e21322675E
«33733897E
018835821F
«10916023E
~e28097222E
¢59617056E
«13968983E
«15793162E
¢21317577E
«23590777€
«85977893E
~e59256155¢E
~e14949971E
~e34750052E
—e49652507E
-431782226E
-e12371701E
—e29222799E
¢ 13854227E
¢22333327E
«10279347E
-e28591793E
~e11269555E
~e24555517E
~+33588728E
—e21897276E
~+90163517E
-—e65013135E
¢12315425E
¢21368678E
«11029965E
~+e29765068E
~e72765351E
~e14027779E
-e17382325E
-011020146E
-+39804858E
¢92756365E
¢23254805E
«42531301E
«23406122E
¢29650061E
~e86066154E
~e70660237E
-+16636308E
¢10114775E
+23836698E
«48905457E

03
03
03
03
03
04
04
04
03
04
04
04
(X4
03
04
04
02
03
04
04
04
04
03
03
04
04
04
04
04
02
04
04
04
03
04
04
o4
04
03
02
04
04
04
02
03
04
04
04
03
02
04
04
04
03
03
03
02
03
03
03

—e52249579E
-,19502780F

+21602213E
«48825011E
059727043E
e44114011E
«4T7238799E
«20892153E
—s15098320E
~e12367233E
—+42138573E
~+40417685E
—-e14573571E
«32136190E
«21126320E
«28600329E
—-e13459492E
¢84319258E
¢15021793E
+15346386E
¢25322549E
«20442727E
«45880471E
-e87451638E
-e16301099E
~e44766220E
- o46459596E
—e25486816E
-e85751401E
«14801051E
«19869818E
¢20136398E
«67202105E
—e54717174E
-e12540499E
-¢30753711E

21 2
_.JJ.‘,?89799E

-018415928E
-e64392383E
e65434308E
«18280039E
«19546988E
«79407188E
—+25069096E
—e82706153E
—e16683040E
-¢16191169E
~¢91453013¢E
—¢25180736E
¢17653342E
«35529776E
¢39203494E
«17733837E
-¢85099869E
-+¢10033604E
~e41147578E
¢29672813E
¢12514029E
¢29163536EF
+56340581E

63

03
03
03
03
03
04
04
04
03
04
04
04
04
03
04
03
03
03
04
04
04
04
03
03
04
o4
04
04
03
03
04
04
03
03
04
04
o4
04
03
02
04
04
03
03
03
04
04
03
03
03
04
04
04
02
04
03
02
03
03
03

~e4T470791E
~+86100942E
+30004280E
«52969217E
«60345485E
e51276391E
«41429830E
01435584 7E
-+53199088E
-e13405978E
~e46841271E
~e24627519E
~e81067651E
«12402972E
222850125E
-0 14458540E
«83669710E
+10640630E
«15663044E
«14610094E
e26564T45E
+16715035E
+78182044E
-.11186638E
-e17327719E
- 49T750946E
-.42101528E
~e21400305E
~e52984304E
«28096839E
«22778826E
«17198016E
«32869969E
- TT454974E
-+13508700E
-+33807128E
-e15052914E
-e41855647E
¢16754725E
«21288304E
+17030533E
+49709073E
~e44061940E
-+89957199E
-¢17894198E
-e14641987E
-.73193304E
~.12108894E
«24584391E
«41826931E
¢34532798E
«12337726E
~e40455600E
~e10949861E
~e21693415E
+58922019E
«15522553E
+35189770€E
«63983852E




e T1713711E
¢32863473E
«26869T14E
e 16269544E
¢93284358E
«52874302E
-«10818753E
—-e2140743%E
«e96945735E
«17340524E
«19963283E
~e19701757E
-e87217659E
«78210565%
«16717356E
«17209137E
=-e44714460E
-¢31118195E
-e82083040E
«45396629E
«58383119F
¢18734521E
«28825915¢€
-+¢15839913E
—e28850456E
~e34961322E
“~eT6046324E
-¢58476128E
-e32537191E
-e14151495E
-e¢53222840E
¢21805001E
«10514643E
-e62943123E
-e17879303E
~e22704505E
¢41145166E
~e¢22591354E
-e11743047E
-¢15854793E
=214405447C
¢16874139E
«13220879E
e48977369E
e 72704453E
e12664415E
-e46308030E
—e23354723E
«75201423E
«27080794E
«33548837E
~e33291990E
-e17581491E
«71373115E
«19653557E
«18994818E
~¢35500846E
-¢30837713E
-e18221235E
=¢12324157E

03
04
04
04
03
03
04
03
03
04
04
04
03
03
04
04
04
04
03
03
03
04
03
04
04
04
04
04
04
04
03
04
04
03
o0&
04
03
03
04
04
04
04
o4
03
02
03
04
04
03
04
04
04
04
03
04
04
04
04
04
04

¢19312400E
«32792891E
024125236E
«14086208E
«83369393E
~e23320166E
~+98114166E
¢98413136E
¢12096838E
«18432079E
«68104054E
~e19120236E
—eb26484821E
¢10911225E
«17536730E
-¢12134913E
~e 44600208E
-¢25001101E
~e38441154E
¢58118609E
e14291876E
«16022005E
~¢20589185E
~e19751376E
-¢30990723E
-e55767947E
-« 74309897E
—e51777799E
~e27015790E
-¢11112806E
¢83162011E
«20737389E
«61644050E
—~e98340032E
-¢19681881E
~e97737363E
«38969813E
~e49005284E
-e13360269E
-¢15%942653E
-e19814620E
e17497231E
¢110C4054E
«33655291E
e 47754740E
~¢23553336E
-e43625943E
-415153545E
¢13713003E
«29817T73E
¢15276532E
~e32874565E
-¢10857165E
«11640859E
«20568093E
-6 54719044E
~e36929475E
~e2T467773E
~e¢15956851E
-¢12119406E

04
04
04
04
03
03
03
02
04
04
02
04
03
04
04
04
04
04
03
03
04
04
03
04
04
04
04
04
04
04
03
04
03
03
04
03
03
03
04
04
02
04
04
03
02
04
04
04
04
04
03
04
04
04
04
03
04
04
04
04

e 26929769E
+31496559E
«21362698E
«e12195766F
«76162898E
~e77600022E
-¢77934859E
«40709713E
«14178240F
«19217907E
-+11157102E
-e16640999E
«12865535E
e13426774E
«17857981E
-+e30473405E
~e41627541E
~¢18953725E
-e25884179E
e64052957E
«18613529F
«12212004E
—e69121496F
—e23233590€
~e32706058E
-e68253775E
-e70292845F
~e45064634F
-e22095333E
—e86576977E
e16549900E
«18165330E
«18061446E
~e12957534E
-e21068295E
-¢18063123E
«24588769E
—eT4438942E
-e14583031E
~+15705563E
e89402663E
«16790761E
«87920352E
«21573607E
«50550377E
-+38125607E
~e38271977E
-+70846877E
«19049269E
¢31764T796E
—-e18314221F
—e29374897E
~o42895536F
e15229674E
«20706929E
-e21327178E
-e36112592E
—e24099369E
~e14217352E
-e12351166F

64

04
04
04
04
03
03
03
03
04
04
04
04
02
04
04
04
04
04
02
03
04
04
03
04
04
04
04
04
04
03
04
04
03
04
04
03
03
03
04
04
03
04
03
03
02
04
04
03
04
04
04
04
03
04
04
04
04
04
04
04

«31147049E
«29410722E
«18714089E
«10610539E
«71420100E
-+10336577E
-e51400016E
¢ 70015764E
«15925989E
«19720065E
~e17446795E
-¢12990388E
«41985710E
«15357595E
«17730705E
~+40592058E
-e36862725E
~¢13287015E
«25300413E
«63892327E
+19819623E
e T7232661E
-e¢11538441E
-e26267669E
-+34020345E
- 74464963E
~«64806253E
~¢38592009E
-e17806359E
~e67436435E
«20692576E
«14620171E
-e23873006E
-+15640948E
~e22065378E
«24822638E
¢« 28459250E
~e97539780E
-«15409875E
-+15180012E
«14290707E
¢15241842E
«67254619E
«12805895E
e T7972428E
~e45022395E
~e31256171E
¢54329615E
¢23502471E
¢32985150K
~e29092765E
—+23977308E
«17828859E
«17891837E
¢20152834E
-e30757125E
-¢33873894E
~e20965984E
-+13011955E
-e12965675E

04
04
04
o4
03
o0&
03
03
04
04
04
04
03
04
04
04
04

03
03
04
03
04

04
04
04
04
04
03
04
04
03
04
04
03
02
03
04
04
04
04
03
03
02
04

02
04
04
04
04
03
04
04
04
04
04
04
04




-¢13904838E
~e845744924F
-e43200987E
~¢35332218E
-¢30571929E
~¢29527849E
+10370665E
~e61417539E
~e28754195E
-e42084134E
~e44812428E
-¢35218210E
~e83930658E
~e18259569E
~e21527068E
~e17892704E
+48918737€
«36058409E
«12680496E
=+ 66392642E
~¢24011491E
«33498710E
«12094696E
«20639441E
«27253770E
«31326158E
«32943841E
¢32544163E
«30683028E
«27896916E
0 245635491E
«21241986E
«17953159E
«14G917740E
«12215427E
«98770345E
«78964892E
«62508095E
«49045295E
¢38177663E
¢29518555€
022664837E
«17299522E
«13132786E
«99199981E
e 74678749E
«55908478E
«41691098E
¢30975121E
022934728E
«16978964E
«12492689E
«91659518E
«67073055E
+48959094E
¢34833620E
¢25319435E
«18364564E
¢13293102E
«96036356E

01
01
01
00

-¢28090684E
-e46659189E
~¢41184903E
~¢33753702E
-¢30012212€E
—-e91866728E
¢86719830E
~¢12205505€
~e33147389E
~e43669156E
~e25894376E
~e27892168E
~e11159208E
~¢19812901E
~¢21171406E
¢13346737E
#49215157€
«29874339F
¢81598293E
-¢20630255E
-e14751584E
«54067183E
«14340384¢
«22513631E
«28515772E
«31947493E
¢33011992E
«32193886E
«30053865E
«27110960E
«23788597E
«20402787E
~17166409E
¢14209053E
«11596237E
«93489030E
«74549320E
¢58876943E
¢46100935E
«35819021E
¢27648016E
#21196077E
«16155787E
«12248753E
e92412699E
e69492023E
e51972666E
e38719616E
028742124E
¢21263882E
¢15729547E
+11565064E
«84796C14E
«62011003E
+45236843F
«32170C96E
¢23370652E
¢ 16942316E
¢12257601E
«88514055E

04
04
04
04
04
03
03
04
04
04
04
03
04
04
04
o4
04
04
03
03
03
03
04
04
04
04
04&
04
Q&
04
04
04
04
04
04
03
03
03
03
03
03
03
03
03
02
02
02
02
02
02
02
02
ol
01
0l
0l
0l
0l
ol
00

—e37342034E
—e46247288E
~039119536E
—e32431211E
~e29670357E
«29323500E
¢ 48438650E
—e18146832E
—+36841818E
—~e44616105E
—¢13821177E
—e37717460E
—+13837991E
—¢20873482E
~e20414459E
¢33059458E
«46472026E
«23715854E
0 44202425E
—¢27715806E
—+15889858E
«75841564E
+16531516E
«24247195E
e29614286E
¢32419525E
«32962169E
«31761232E
«29375013¢€
¢26301861E
«22938197E
«19573338E
«16397409E
«13522122E
¢ 10999975E
«88430225E
«70338389E
¢55426949E
e43312415E
¢33591422E
¢25885739E
¢19815320E
¢15082658E
¢11420741E
+86065535E
«646486TTE
«48302224E
+35951809E
¢26664488E
«19710879E
«14569384E
«10704465E
«78433658E
«57322157E
«41791515E
¢29706C99E
«21569013E
«15628264E
«11301418E
«81571740E

65

04
04
04
04
04
03
03
04
04
04
04
03
04
04
04
04
04
04
03
03
02
03
04
04

04
04
04
4

04
04
04
04
04
03
03
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how the actual kernel can be generated by the estimated minimum kernel. Hence the
original IRT can be generated by the minimum kernel.

av 1000
rms. 800
res. 600 — Fig. 29. Average rms residual as a func-
400 tion of duration for the actual ker-
200 nel of Example 3.
0
123 5 span

In order to be more convincing yet, the homogeneous equations for the samples of
the actual kernel itself were solved for durations 1-5. The plot of the average rms

residual is shown in Fig. 29, and indicates 4 to be the "correct" span. The solution
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Fig. 30. Solutions to the homogeneous equations for the actual
kernel of Example 3.

for duration 4 is plotted in Fig. 30, and is essentially the same as that previously

obtained from the original IRT.
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